One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw...One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.展开更多
The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability qua...The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability quantification,which is acceptable for networks carrying complex traffic flows.Complex network traffic is considered as general multi-rate,heterogeneous traffic,where the individual bandwidth demands may aggregate in complex,nonlinear ways.Blocking probability is the chosen measure for survivability analysis.We study an arbitrary topology and some other known topologies for the network.Independent and dependent failure scenarios as well as deterministic and random traffic models are investigated.Finally,we provide survivability evaluation results for different network configurations.The results show that by using about 50%of the link capacity in networks with a relatively high number of links,the blocking probability remains near zero in the case of a limited number of failures.展开更多
文摘One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.
文摘The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability quantification,which is acceptable for networks carrying complex traffic flows.Complex network traffic is considered as general multi-rate,heterogeneous traffic,where the individual bandwidth demands may aggregate in complex,nonlinear ways.Blocking probability is the chosen measure for survivability analysis.We study an arbitrary topology and some other known topologies for the network.Independent and dependent failure scenarios as well as deterministic and random traffic models are investigated.Finally,we provide survivability evaluation results for different network configurations.The results show that by using about 50%of the link capacity in networks with a relatively high number of links,the blocking probability remains near zero in the case of a limited number of failures.