Rechargeable aqueous zinc metal batteries(RAZMBs) have received extensive attention for large-scale energy storage systems due to the merits of Zn anodes, including moderate volumetric and gravimetric energy density, ...Rechargeable aqueous zinc metal batteries(RAZMBs) have received extensive attention for large-scale energy storage systems due to the merits of Zn anodes, including moderate volumetric and gravimetric energy density, low redox potential, abundant reserve, low cost and impressive intrinsic safety. However, Zn anodes suffer from a series of adverse reactions(dendrite growth,hydrogen evolution, and surface passivation) resulting in low Coulombic efficiency, large polarization, and unsatisfied cycling performance, which inevitably hinder the wide application of RAZMBs. To address the above issues, cellulose-based materials are widely used for Zn anode protection because of their unique physical and chemical properties and other advantages such as biocompatibility, non-toxicity, degradability and easy extraction. In order to better understand the current progress in cellulosebased materials for the Zn anode protection, we have classified and summarized the relevant literatures. In this review, we summarize and elaborate the causes of poor reversibility for Zn anodes, including dendrite formation, hydrogen evolution, and surface passivation. Subsequently, the effective strategies(anode interfacial engineering, gel electrolyte optimization, and separator modification) of cellulose-based materials toward stabilizing Zn anodes are overviewed. In the end, the existing challenges and prospects of cellulose-based materials in Zn anode protection are summarized to shed light on future work.展开更多
Polyvinyl alcohol(PVA)hydrogels are widely used for flexible sensors by adding various conductive substances due to their excellent mechanical properties and self-healing properties.However,most of the conductive subs...Polyvinyl alcohol(PVA)hydrogels are widely used for flexible sensors by adding various conductive substances due to their excellent mechanical properties and self-healing properties.However,most of the conductive substances added to PVA hydrogel sensors are currently complicated to prepare,costly,and environmentally unfriendly.Herein,to overcome this challenge,we successfully prepared intrinsic conductive cellulose nanofiber(G-CNF)by simply applying sulfuric acid and a low-energy water bath with heat treatment,and obtained a powerful multifunctional self-healing PGC hydrogel biosensor using dynamic chemical cross-linking of PVA and borax with glycerol and G-CNF.The obtained PGC hydrogels have excellent mechanical properties(strain:950%),good adhesion ability,robust self-healing properties,and room-temperature reversibility,due to the presence of conductive networks and hydrogen bonds within PGC hydrogel.Especially,PGC hydrogels with the graphene structured G-CNF have a fast response to various signals and good stability with gauge factor(GF)values up to 1.83,as well as a sensitive response to temperature(temperature coefficient of resistance(TCR)up to 1.9),which can be designed as a variety of biosensors,such as human motion monitoring,information encryption/transmission,and real-time temperature monitoring biosensors.Thus,PGC hydrogels as multifunctional self-healing hydrogel biosensors pave the way for the development of flexible biosensors in wearable devices,human–computer interaction,and artificial-related applications.展开更多
If a person comes into contact with pathogens on public facilities,there is a threat of contact(skin/wound)infections.More urgently,there are also reports about COVID-19 coronavirus contact infection,which once again ...If a person comes into contact with pathogens on public facilities,there is a threat of contact(skin/wound)infections.More urgently,there are also reports about COVID-19 coronavirus contact infection,which once again reminds that contact infection is a very easily overlooked disease exposure route.Herein,we propose an innovative implantation strategy to fabricate a multi-walled carbon nanotube/polyvinyl alcohol(MWCNT/PVA,MCP)interpenetrating interface to achieve flexibility,anti-damage,and non-contact sensing electronic skin(E-skin).Interestingly,the MCP E-skin had a fascinating non-contact sensing function,which can respond to the finger approaching 0−20 mm through the spatial weak field.This non-contact sensing can be applied urgently to human–machine interactions in public facilities to block pathogen.The scratches of the fruit knife did not damage the MCP E-skin,and can resist chemical corrosion after hydrophobic treatment.In addition,the MCP E-skin was developed to real-time monitor the respiratory and cough for exercise detection and disease diagnosis.Notably,the MCP E-skin has great potential for emergency applications in times of infectious disease pandemics.展开更多
基金supported by National Natural Science Foundation of China (52273095, 22209140, 52202286)Zhejiang Provincial Natural Science Foundation of China (LGG23B030011,LY24B030006)+7 种基金Zhejiang Provincial Natural Science Key Foundation of China (LZ20E030003LGG22E030005)Natural Science Foundation of Shandong Province (ZR2022QE059)the Outstanding Youth Project of Zhejiang Provincial Natural Science Foundation (LR22E030002)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(KF2314)a Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department (Y202148249)Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 21202086-YShandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (Yantai)(AMGM2023A08)。
文摘Rechargeable aqueous zinc metal batteries(RAZMBs) have received extensive attention for large-scale energy storage systems due to the merits of Zn anodes, including moderate volumetric and gravimetric energy density, low redox potential, abundant reserve, low cost and impressive intrinsic safety. However, Zn anodes suffer from a series of adverse reactions(dendrite growth,hydrogen evolution, and surface passivation) resulting in low Coulombic efficiency, large polarization, and unsatisfied cycling performance, which inevitably hinder the wide application of RAZMBs. To address the above issues, cellulose-based materials are widely used for Zn anode protection because of their unique physical and chemical properties and other advantages such as biocompatibility, non-toxicity, degradability and easy extraction. In order to better understand the current progress in cellulosebased materials for the Zn anode protection, we have classified and summarized the relevant literatures. In this review, we summarize and elaborate the causes of poor reversibility for Zn anodes, including dendrite formation, hydrogen evolution, and surface passivation. Subsequently, the effective strategies(anode interfacial engineering, gel electrolyte optimization, and separator modification) of cellulose-based materials toward stabilizing Zn anodes are overviewed. In the end, the existing challenges and prospects of cellulose-based materials in Zn anode protection are summarized to shed light on future work.
基金supported by Outstanding Youth Project of Zhejiang Provincial Natural Science Foundation(No.LR22E030002)Zhejiang Provincial Natural Science Key Foundation of China(No.LZ20E030003/LGG22E030005)the National Natural Science Key Foundation of China(No.52273095).
文摘Polyvinyl alcohol(PVA)hydrogels are widely used for flexible sensors by adding various conductive substances due to their excellent mechanical properties and self-healing properties.However,most of the conductive substances added to PVA hydrogel sensors are currently complicated to prepare,costly,and environmentally unfriendly.Herein,to overcome this challenge,we successfully prepared intrinsic conductive cellulose nanofiber(G-CNF)by simply applying sulfuric acid and a low-energy water bath with heat treatment,and obtained a powerful multifunctional self-healing PGC hydrogel biosensor using dynamic chemical cross-linking of PVA and borax with glycerol and G-CNF.The obtained PGC hydrogels have excellent mechanical properties(strain:950%),good adhesion ability,robust self-healing properties,and room-temperature reversibility,due to the presence of conductive networks and hydrogen bonds within PGC hydrogel.Especially,PGC hydrogels with the graphene structured G-CNF have a fast response to various signals and good stability with gauge factor(GF)values up to 1.83,as well as a sensitive response to temperature(temperature coefficient of resistance(TCR)up to 1.9),which can be designed as a variety of biosensors,such as human motion monitoring,information encryption/transmission,and real-time temperature monitoring biosensors.Thus,PGC hydrogels as multifunctional self-healing hydrogel biosensors pave the way for the development of flexible biosensors in wearable devices,human–computer interaction,and artificial-related applications.
基金Zhejiang Provincial Natural Science Key Foundation of China(No.LZ20E030003)National Science Foundation of China(No.51673121)+1 种基金Candidates of Young and Middle Aged Academic Leader of Zhejiang Province,the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)Excellent Doctoral Thesis Cultivation Fund(No.2019D01).
文摘If a person comes into contact with pathogens on public facilities,there is a threat of contact(skin/wound)infections.More urgently,there are also reports about COVID-19 coronavirus contact infection,which once again reminds that contact infection is a very easily overlooked disease exposure route.Herein,we propose an innovative implantation strategy to fabricate a multi-walled carbon nanotube/polyvinyl alcohol(MWCNT/PVA,MCP)interpenetrating interface to achieve flexibility,anti-damage,and non-contact sensing electronic skin(E-skin).Interestingly,the MCP E-skin had a fascinating non-contact sensing function,which can respond to the finger approaching 0−20 mm through the spatial weak field.This non-contact sensing can be applied urgently to human–machine interactions in public facilities to block pathogen.The scratches of the fruit knife did not damage the MCP E-skin,and can resist chemical corrosion after hydrophobic treatment.In addition,the MCP E-skin was developed to real-time monitor the respiratory and cough for exercise detection and disease diagnosis.Notably,the MCP E-skin has great potential for emergency applications in times of infectious disease pandemics.