期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A graph theory model using human nature structure
1
作者 Liu Jia hu haimiao +2 位作者 Duan Miyi Li Wenfa Yuan Jiazheng 《High Technology Letters》 EI CAS 2017年第4期350-359,共10页
A graph theory model of the human nature structure( GMH) for machine vision and image/graphics processing is described in this paper. Independent from the motion and deformation of contours,the human nature structure(... A graph theory model of the human nature structure( GMH) for machine vision and image/graphics processing is described in this paper. Independent from the motion and deformation of contours,the human nature structure( HNS) embodies the most basic movement characteristics of the body. The human body can be divided into basic units like head,torso,and limbs. Using these basic units,a graph theory model for the HNS can be constructed. GMH provides a basic model for human posture processing,and the outline in the perspective projection plane is the body contour of an image. In addition,the GMH can be applied to articulated motion and deformable objects,e. g.,in the design and analysis of body posture,by modifying mapping parameters of the GMH. 展开更多
关键词 articulated motion and deformable objects(AMDO) human nature structure(HNS) graph theory machine vision image/graphics processing
下载PDF
特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法
2
作者 章东平 魏杨悦 +3 位作者 何数技 徐云超 胡海苗 黄文君 《图学学报》 CSCD 北大核心 2024年第5期968-978,共11页
目标检测是计算机视觉领域中的一项重要任务,旨在从图像或视频中准确识别和定位感兴趣的目标物体。本文提出了一种改进的目标检测算法,通过增加特征融合、优化编码器层间传递方式和设计随机跳跃保持方法,解决一般Transformer模型在目标... 目标检测是计算机视觉领域中的一项重要任务,旨在从图像或视频中准确识别和定位感兴趣的目标物体。本文提出了一种改进的目标检测算法,通过增加特征融合、优化编码器层间传递方式和设计随机跳跃保持方法,解决一般Transformer模型在目标检测任务中存在的局限性。针对Transformer视觉模型由于计算量限制只应用一层特征,导致目标对象信息感知不足的问题,利用卷积注意力机制实现了多尺度特征的有效融合,提高了对目标的识别和定位能力。通过优化编码器的层间传递方式,使得每层编码器有效地传递和学习更多的信息,减少层间信息的丢失。还针对解码器中间阶段预测优于最终阶段的问题,设计了随机跳跃保持方法,提高了模型的预测准确性和稳定性。实验结果表明,改进方法在目标检测任务中取得了显著的性能提升,在COCO2017数据集上,模型的平均精度AP达到了42.3%,小目标的平均精度提高了2.2%;在PASCAL VOC2007数据集上,模型的平均精度AP提高了1.4%,小目标的平均精度提高了2.4%。 展开更多
关键词 目标检测 特征融合 TRANSFORMER 注意力机制 图像处理
下载PDF
运动信息引导的目标检测算法 被引量:1
3
作者 胡海苗 沈柳青 +1 位作者 高立崑 李明竹 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第9期1710-1720,共11页
在室外监控视频的场景下,由于场景的复杂性及目标的多样性,监控视频中的目标存在难以检测的情况,如目标被遮挡、目标尺寸变化等,目标检测任务仍然存在挑战。基于此,提出了一种利用运动信息引导基于卷积神经网络的目标检测算法来提高目... 在室外监控视频的场景下,由于场景的复杂性及目标的多样性,监控视频中的目标存在难以检测的情况,如目标被遮挡、目标尺寸变化等,目标检测任务仍然存在挑战。基于此,提出了一种利用运动信息引导基于卷积神经网络的目标检测算法来提高目标检测的准确率。对运动目标检测算法进行一定的改进,使得到的运动前景图中能够保持静止目标前景的存在;利用运动前景图中的前景可以指示目标空间位置的特点,在特征层面将网络提取的特征图与获取的以运动前景图为主的运动信息相融合,提高特征图可能存在目标区域的响应值;在目标检测算法的检测器中,引入一个定位分支,利用视频帧的运动前景图,学习候选目标的定位置信度,并与目标的分类置信度加权求和,作为目标最终的置信度,再通过非极大值抑制方法得到检测结果。实验证明,在固定摄像机下采集的数据集中,所提算法能够提升目标检测的准确率。 展开更多
关键词 运动信息 前景区域 特征融合 定位分支 目标检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部