期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system 被引量:1
1
作者 Na Wang Wang Luo +6 位作者 huaiyi shen Huakai Li Zejiang Xu Zhiyuan Yue Chao Shi Hengyun Ye Leping Miao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期477-481,共5页
Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req... Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials. 展开更多
关键词 Organic-inorganic hybrid perovskite Crystal engineering Inverse temperature symmetry breaking Displacement type phase transition FERROELASTICITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部