Organic materials with redox-active centers are regarded as promising candidates for rechargeable batteries in recent years for their light weight, low cost, environmental friendliness and structural diversity [1–4]....Organic materials with redox-active centers are regarded as promising candidates for rechargeable batteries in recent years for their light weight, low cost, environmental friendliness and structural diversity [1–4]. Organic materials, such as conducting polymers (polyacetylene, polypyrrole, polyaniline, etc.)[5], conjugated carbonyl compounds (quinone compounds, imides, etc.)[6–9] and nitroxide radical (N-O.)[10,11] compounds have been attempted as cathode materials in lithium-ion batteries (LIBs).展开更多
基金financially supported by the National Key R&D Program of China(2017YFA0206700)the National Natural Science Foundation of China(grant No.21822506&51671107)+1 种基金the 111 project of B12015the Natural Science Foundation of Tianjin(grant No.19JCJQJC62400)。
文摘Organic materials with redox-active centers are regarded as promising candidates for rechargeable batteries in recent years for their light weight, low cost, environmental friendliness and structural diversity [1–4]. Organic materials, such as conducting polymers (polyacetylene, polypyrrole, polyaniline, etc.)[5], conjugated carbonyl compounds (quinone compounds, imides, etc.)[6–9] and nitroxide radical (N-O.)[10,11] compounds have been attempted as cathode materials in lithium-ion batteries (LIBs).