The abiotic association between phthalic acid esters (PAEs) and humic substances (HS) in sludge landfill plays an important role in the fate and stability of PAEs. An equilibrium dialysis combined with 14C-labelin...The abiotic association between phthalic acid esters (PAEs) and humic substances (HS) in sludge landfill plays an important role in the fate and stability of PAEs. An equilibrium dialysis combined with 14C-labeling was used to study the abiotic association of two abundant PAEs (diethyl phthalate and di-n-butyl phthalate) with humic acid (HA) isolated from a sludge landfill with different stabilization times and different molecular weights. Ele- mental analysis and Fourier Transform Infrared Spectro- photometer (FTIR) suggested that high KA value of HA was related to the high aromatic content and large molecular weight of HA. The results indicated that the association strength of PAEs with HA depended on both the properties of the PAEs and the characteristics of HA. The KA values of the association were strongly dependent on solution pH, and decreased dramatically as the pH was increased from 3.0 to 9.0. The results suggested that non- specific hydrophobic interaction between PAEs and HA was the main contributor to the association of the PAEs with HA. The interactive hydrogen-bonds between the HA and the PAEs molecules may also be involved in the association.展开更多
文摘The abiotic association between phthalic acid esters (PAEs) and humic substances (HS) in sludge landfill plays an important role in the fate and stability of PAEs. An equilibrium dialysis combined with 14C-labeling was used to study the abiotic association of two abundant PAEs (diethyl phthalate and di-n-butyl phthalate) with humic acid (HA) isolated from a sludge landfill with different stabilization times and different molecular weights. Ele- mental analysis and Fourier Transform Infrared Spectro- photometer (FTIR) suggested that high KA value of HA was related to the high aromatic content and large molecular weight of HA. The results indicated that the association strength of PAEs with HA depended on both the properties of the PAEs and the characteristics of HA. The KA values of the association were strongly dependent on solution pH, and decreased dramatically as the pH was increased from 3.0 to 9.0. The results suggested that non- specific hydrophobic interaction between PAEs and HA was the main contributor to the association of the PAEs with HA. The interactive hydrogen-bonds between the HA and the PAEs molecules may also be involved in the association.