The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d...The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.展开更多
基金supported by the National Basic Research Program of China(Grant 2005CB 221405)
文摘The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.