Switchable diode effect in ferroelectric diodes has attracted much attention for its potential applications in novel nonvolatile memories. We briefly review recent investigations on the switchable diode effect in ferr...Switchable diode effect in ferroelectric diodes has attracted much attention for its potential applications in novel nonvolatile memories. We briefly review recent investigations on the switchable diode effect in ferroelectric diodes both experimentally and theoretically. Many recent studies demonstrate that the interfacial barrier between the metal-ferroelectrics could be modulated by the polarization charges, and the ferroelectric polarization that can be reversed by an external electric field plays a dominant role in the switchable diode effect. Moreover, we review a self-consistent numerical model, which can well describe the switchable diode effect in ferroelectric diodes. Based on this model, it can be predicted that it is a better choice to select metals with a smaller permittivity, such as noble metals, to obtain a more pronounced switchable diode effect in ferroelectric diodes.展开更多
基金supported by the National Basic Research Program of China (Nos. 2012CB921403 and 2013CB328706)the National Natural Science Foundation of China (Nos. 11134012 and 11174355)
文摘Switchable diode effect in ferroelectric diodes has attracted much attention for its potential applications in novel nonvolatile memories. We briefly review recent investigations on the switchable diode effect in ferroelectric diodes both experimentally and theoretically. Many recent studies demonstrate that the interfacial barrier between the metal-ferroelectrics could be modulated by the polarization charges, and the ferroelectric polarization that can be reversed by an external electric field plays a dominant role in the switchable diode effect. Moreover, we review a self-consistent numerical model, which can well describe the switchable diode effect in ferroelectric diodes. Based on this model, it can be predicted that it is a better choice to select metals with a smaller permittivity, such as noble metals, to obtain a more pronounced switchable diode effect in ferroelectric diodes.