期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion
1
作者 Fengxing Liang Yongzheng Zhu +5 位作者 Nannan Wang Meiping Zhu huibing he Yanqiu Zhu Peikang Shen Jinliang Zhu 《Chinese Chemical Letters》 SCIE CAS 2024年第11期172-181,共10页
Lithium-sulfur(Li-S) batteries are considered one of the most promising next-generation secondary batteries owing to their ultrahigh theoretical energy density.However,practical applications are hindered by the shuttl... Lithium-sulfur(Li-S) batteries are considered one of the most promising next-generation secondary batteries owing to their ultrahigh theoretical energy density.However,practical applications are hindered by the shuttle effect of soluble lithium polysulfides(Li PSs) and sluggish redox kinetics,which result in low active material utilization and poor cycling stability.Various copper-based materials have been used to inhibit the shuttle effect of Li PSs,owing to the strong anchoring effect caused by the lithiophilic/sulphilic sites and the accelerated conversion kinetics caused by excellent catalytic activity.This study briefly introduces the working principles of Li-S batteries,followed by a summary of the synthetic methods for copper-based materials.Moreover,the recent research progress in the utilization of various copper-based materials in cathodes and separators of Li-S batteries,including copper oxides,copper sulfides,copper phosphides,copper selenides,copper-based metal-organic frameworks(MOFs),and copper single-atom,are systematically summarized.Subsequently,three strategies to improve the electrochemical performance of copper-based materials through defect engineering,morphology regulation,and synergistic effect of different components are presented.Finally,our perspectives on the future development of copper-based materials are presented,highlighting the major challenges in the rational design and synthesis of high-performance Li-S batteries. 展开更多
关键词 Li-S batteries Copper-based material Lithium polysulfides Adsorption Catalysis
原文传递
Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries 被引量:4
2
作者 huibing he hengjiang Cong +2 位作者 Ya Sun Ling Zan Youxiang Zhang 《Nano Research》 SCIE EI CAS CSCD 2017年第2期556-569,共14页
Spinel phase LiMn2O4 was successfully embedded into monoclinic phase layered- structured Li2MnO3 nanorods, and these spineMayered integrate structured nanorods showed both high capacities and superior high-rate capabi... Spinel phase LiMn2O4 was successfully embedded into monoclinic phase layered- structured Li2MnO3 nanorods, and these spineMayered integrate structured nanorods showed both high capacities and superior high-rate capabilities as cathode material for lithium-ion batteries (LIBs). Pristine Li2MnO3 nanorods were synthesized by a simple rheological phase method using α-MnO2 nanowires as precursors. The spinel-layered integrate structured nanorods were fabricated by a facile partial reduction reaction using stearic acid as the reductant. Both structural characterizations and electrochemical properties of the integrate structured nanorods verified that LiMn2O4 nanodomains were embedded inside the pristine Li2MnO3 nanorods. When used as cathode materials for LIBs, the spineMayered integrate structured Li2MnO3 nanorods (SL-Li2MnO3) showed much better performances than the pristine layered-structured Li2MnO3 nanorods (L-Li2MnO3). When charge-discharged at 20 mA.g-1 in a voltage window of 2.0-4.8 V, the SL-Li2MnO3 showed discharge capacities of 272.3 and 228.4 mAh.g-1 in the first and the 60th cycles, respectively, with capacity retention of 83.8%. The SL-Li2MnO3 also showed superior high-rate performances. When cycled at rates of 1 C, 2 C, 5 C, and 10 C (1 C = 200 mA-g-1) for hundreds of cycles, the discharge capacities of the SL-Li2MnO3 reached 218.9, 200.5, 147.1, and 123.9 mAh-g-1, respectively. The superior performances of the SL-Li2MnO3 are ascribed to the spineMayered integrated structures. With large capacities and superior high-rate performances, these spinel-layered integrate structured materials are good candidates for cathodes of next-generation high-power LIBs. 展开更多
关键词 lithium-ion batteries cathode layered-spinel integrated structure LI2MNO3 NANORODS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部