期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A crosslinking hydrogel binder for high-sulfur content S@pPAN cathode in rechargeable lithium batteries 被引量:1
1
作者 Huanhuan Yuan Cheng Guo +4 位作者 Jiahang Chen huichao lu Jun Yang Yanna Nuli Jiulin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期360-367,共8页
High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode deliv... High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density. 展开更多
关键词 Hydrogel binder Crosslinking network Chemical binding agents High sulfur content Lithium-sulfur battery
下载PDF
Crosslinked polyacrylonitrile precursor for S@pPAN composite cathode materials for rechargeable lithium batteries
2
作者 Jingyu Lei huichao lu +3 位作者 Jiahang Chen Jun Yang Yanna Nuli Jiulin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期186-193,共8页
S@pPAN has become promising cathode materials in rechargeable batteries due to its high compressed density,low E/S ratio,no polysulfide dissolution,no self-discharge,and stable cycling.However,it is a big challenge to... S@pPAN has become promising cathode materials in rechargeable batteries due to its high compressed density,low E/S ratio,no polysulfide dissolution,no self-discharge,and stable cycling.However,it is a big challenge to enhance its sulfur content which determines its practical specific capacity.Herein,we prepare crosslinked PAN as precursor,leading to effective enhancement of sulfur content up to 55 wt%and a reversible specific capacity of 838 mAh g _(composites)^(-1) at 0.2C.Because of the microporous structure and high specific area,crosslinked PAN provides more space to accommodate sulfur molecule and improve the interfacial reaction of S@pPAN as well.This work provides a promising direction to design S@pPAN for lithium sulfur batteries with high energy density. 展开更多
关键词 Lithium sulfur cathode S@pPAN Porous and crosslink PAN Sulfur content
下载PDF
Roadmap for rechargeable batteries:present and beyond 被引量:13
3
作者 Sen Xin Xu Zhang +40 位作者 Lin Wang Haijun Yu Xin Chang Yu-Ming Zhao Qinghai Meng Pan Xu Chen-Zi Zhao Jiahang Chen huichao lu Xirui Kong Jiulin Wang Kai Chen Gang Huang Xinbo Zhang Yu Su Yao Xiao Shu-Lei Chou Shilin Zhang Zaiping Guo Aobing Du Guanglei Cui Gaojing Yang Qing Zhao Liubing Dong Dong Zhou Feiyu Kang Hu Hong Chunyi Zhi Zhizhang Yuan Xianfeng Li Yifei Mo Yizhou Zhu Dongfang Yu Xincheng Lei Jianxiong Zhao Jiayi Wang Dong Su Yu-Guo Guo Qiang Zhang Jun Chen Li-Jun Wan 《Science China Chemistry》 SCIE EI CSCD 2024年第1期13-42,共30页
Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ... Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research. 展开更多
关键词 energy storage rechargeable batteries battery materials ELECTROCHEMISTRY
原文传递
Structure and reactions mechanism of sulfurized polyacrylonitrile as cathodes for rechargeable Li-S batteries 被引量:1
4
作者 Xuan Zhang Huiyang Ma +4 位作者 Jiqiong Liu Jiahang Chen huichao lu Yudai Huang Jiulin Wang 《Nano Research》 SCIE EI CSCD 2023年第6期8159-8172,共14页
Sulfurized polyacrylonitrile(S@pPAN)composite provides a conductive pathway for sulfur active material at the molecular level and has already become one of the most promising cathode materials in lithium-sulfur batter... Sulfurized polyacrylonitrile(S@pPAN)composite provides a conductive pathway for sulfur active material at the molecular level and has already become one of the most promising cathode materials in lithium-sulfur batteries because of its outstanding electrochemical performances via novel solid-solid conversion mechanism.Although there are a great number of researches on the S@pPAN composite material,the accurate structure of S@pPAN and its redox reaction mechanism during the charge-discharge process still have not been determined.The previous research and inferences about the structure of S@pPAN and its electrochemical reaction mechanism were summarized in this review,providing a reference for the future study of lithiumsulfur batteries. 展开更多
关键词 sulfurized polyacrylonitrile(S@pPAN)cathode STRUCTURE lithium-sulfur batteries MECHANISM
原文传递
Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries
5
作者 Jiahang Chen Yang Zhang +5 位作者 huichao lu Juan Ding Xingchao Wang Yudai Huang Huiyang Ma Jiulin Wang 《eScience》 2023年第4期81-88,共8页
Lithium metal batteries are regarded as promising alternative next-generation energy storage systems.However,the unstable anode interphase results in dendrite growth and irreversible lithium consumption with low Coulo... Lithium metal batteries are regarded as promising alternative next-generation energy storage systems.However,the unstable anode interphase results in dendrite growth and irreversible lithium consumption with low Coulombic efficiency(CE).Herein,we rationally design a Li^(+)coordination structure via electrolyte solvation chemistry.Nitrate anions are aggregated in the solvation sheath,even at low concentration in a solvent with moderate solvation ability,which promotes Li^(+)desolvation and constructs a nitrate anion-tuned interphase.Meanwhile,a high-donor-number solvent is introduced as an additive to strongly coordinate with Li^(+),which accelerates the ion-transfer kinetics and rate performance.This not only results in micro-sized lithium deposition and a high CE of 99.5%over 3500 h,but also enables superior anode stability even under 50%depth plating/stripping and with a lean electrolyte of 3 g Ah^(-1)at 50℃.A lithium-sulfur battery exhibits a prolonged lifespan of 2000 cycles with an average CE of 100%.A full battery using 1x excess lithium exhibits a high capacity near 1600 mAh g S^(-1)for 100 cycles without capacity loss.Moreover,a 0.55 Ah pouch cell delivers a reversible energy density of 423 Wh kg^(-1)based on these electrodes and electrolyte. 展开更多
关键词 Lithium metal anode Solvation chemistry Anode interphase Coulombic efficiency High energy density
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部