期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research of Dyeing Thermodynamics and Supramolecular Structure of Luteolin on Wool Fabric 被引量:2
1
作者 Can Chen Wei Zhao +4 位作者 Wen Liu Yuan Zhang huimin tang Dequan Xu Chunling Zheng 《World Journal of Engineering and Technology》 2017年第1期19-28,共10页
Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut... Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut shell, and the structure of the isolated luteolin was characterized with FTIR techniques. The interaction between dyestuff and fiber was preliminarily discussed through thermodynamic study and supramolecular structure simulation to explain the intrinsic reasons why the color fastness was low when luteolin was applied to dyeing wool fabric. The extraction condition and purification parameter were as follows: 65% ethanol, ratio of material to liquid 1:20, 80°C, 3 h, chloroform-methanol-water (4/3/2, V/V), 800 rmp/min, 2.0 Mkpa, 0.5 mL/ min and 280 nm. The results of dyeing thermodynamics showed that the sorption isotherm of luteolin on wool fabric was consistent with Nernst model and similar to the disperse dyestuff. With molecular simulation, luteolin and glycin composed 8 stable complexes whose Laplacian values all were greater than 0, which suggested typical hydrogen bonds existing. The complex with three hydrogen bonds was proved the most stable. Both studies on thermodynamics and supramolecular simulation revealed that luteolin on wool fabric mainly depended on the weak hydrogen bonds interaction that determined the low dyefastness. 展开更多
关键词 LUTEOLIN Isolation DYEING THERMODYNAMICS SUPRAMOLECULAR Structure WOOL FABRIC
下载PDF
Effective dielectric attenuation for excellent microwave absorption with broadband response of carbon hollow microspheres derived from resin
2
作者 Kexin Jin Xueai Li +5 位作者 huimin tang Yuning Shi Chunsheng Wang Wanchun Guo Kesong Tian Haiyan Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第10期224-233,共10页
Carbon hollow microspheres as microwave absorption materials(MAMs)are of great significance in the research focuses owing to their lightweight,good impedance matching,and modifiable dielectric proper-ties.However,it i... Carbon hollow microspheres as microwave absorption materials(MAMs)are of great significance in the research focuses owing to their lightweight,good impedance matching,and modifiable dielectric proper-ties.However,it is still a huge challenge to distinguish the contribution of dielectric attenuation between carbon intrinsic feature and hollow structure due to the lack of appropriate model materials.Then,the inadequate analysis of effective dielectric attenuation resulted in the construction of carbon hollow mi-crospheres semiempirical and often lacked precise modification of microstructure.Herein,a series of car-bon hollow microspheres with controllable graphitization and thickness of shell derived from phenolic resin coated on polystyrene microspheres that fully decomposed were synthesized,which is free of the impact of template residue.The carbon fragments ground from hollow microspheres exhibit the same broadband response as hollow microspheres,with effective bandwidth(RL<-10 dB)of 7.6 GHz,while their electromagnetic wave loss mechanisms are distinct.The high dielectric loss of carbon fragments with the same intrinsic characteristics as carbon hollow microspheres is mainly caused by dipole po-larization relaxation and enhancement of electrical conductivity ascribed to overlapping between carbon sheets.For the hollow structure,in addition to dipole polarization relaxation attributed to carbon intrin-sic feature,the effective dielectric loss is also comprised of the interfacial polarization in advantage due to the effective heterogeneous interface between air and carbon shell.This work provides a simplified model to clarify the effect of carbon intrinsic feature and microstructure on the dielectric loss of carbon hollow microspheres. 展开更多
关键词 Effective dielectric attenuation Microwave absorption Broadband response Hollow microspheres Carbon derived from resin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部