期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Facile ultrasonic-assisted synthesis of micro–nanosheet structure Bi_4Ti_3O_(12)/g-C_3N_4 composites with enhanced photocatalytic activity on organic pollutants 被引量:2
1
作者 Huihui Gan Futao Yi +3 位作者 huining zhang Yongxing Qian Huixia Jin Kefeng zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第12期2628-2635,共8页
The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on th... The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on the surface of regular Bi_4Ti_3O_(12) sheets. Comparing with pure Bi_4Ti_3O_(12) and g-C_3N_4, the Bi_4Ti_3O_(12)/g-C_3N_4 composites showed significant enhancement in photocatalytic efficiency for the degradation of RhB in solution. With the mass ratio of g-C_3N_4 increasing to 10 wt%, the Bi_4Ti_3O_(12)/g-C_3N_4-10% presented the best photocatalytic activity. Its photocatalysis reaction constant was approximately 2 times higher than the single component Bi_4Ti_3O_(12) or g-C_3N_4. Meanwhile, good stability and durability for the Bi_4Ti_3O_(12)/g-C_3N_4-10% were confirmed by the recycling experiment and FT-IR analysis. The possible mechanism for the improvements was the matched band positions and the effective separation of photo-excited electrons(e-) and holes(h+). Furthermore, based on the results of active species trapping, photo-generated holes(h+) and superoxide radical(·O2-) could be the main radicals in reaction. 展开更多
关键词 RHODAMINE B Photocatalyst Ultrasonic assisted synthesis BI4TI3O12 g-C3N4
下载PDF
Salt effect on MUCT system performance of nitrogen and phosphorus removal
2
作者 huining zhang Zhuowei zhang +4 位作者 Kewei Jiang Zhili Li Kefeng zhang Jianqing Ma Yongxing Qian 《Green Energy & Environment》 SCIE CSCD 2021年第5期670-677,共8页
The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town(MUCT)system.Removal rates of COD,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,phosphor... The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town(MUCT)system.Removal rates of COD,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,phosphorus and the sludge characteristics at salt concentrations(0.0,3.2,6.4,11.2 and 16.0 g L^(-1))were analyzed.With the salt concentration increasing,all the COD,NH_(4)^(+)-N,TN and TP removal rates exhibited a trend of decline,and exhibited an initial reduction and subsequent increase at every stage of salt concentration.NH_(4)^(+)-N,TN and TP removal rates were 92.7%,51.5%and 67.2%in 16 g L^(-1) salt concentration,respectively.And they were outperformed the literature reported and acceptable in practical applications.When the salinity of wastewater changed from 0.0 to 16.0 g L^(-1),the biomass yield coefficients increased from 0.0794 to 0.126 g VSS/g COD.Increased salinity had a detrimental effect on phosphorus-accumulating organisms(PAOs)and denitrifying PAOs(DPAOs)(especially DPAOs).Therefore,phosphorus removal gradually depended on PAO.The simultaneous nitrification and denitrification(SND)rate and nitrogen removal rate(including nitrification rate,denitrification rate,and total nitrogen removal rate)gradually decreased with the increased salinity. 展开更多
关键词 Aquaculture wastewater Denitrifying phosphorus removal MUCT process TP SND rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部