[ Objective] This study was conducted to investigate the mechanism of Echinacea polysaccharide (EPS) in treatment of various bacterial infection and reduction of inflammation, so as to provide a theoretical basis fo...[ Objective] This study was conducted to investigate the mechanism of Echinacea polysaccharide (EPS) in treatment of various bacterial infection and reduction of inflammation, so as to provide a theoretical basis for clinic application of EPS. [ Method ] Nuclear protein extracted from six groups, the normal control group, the simple lipopolysaccharide (LPS) group and the EPS ( with concentrations of 50,100,200 and 500 μg/ml, respectively) + LPS groups was subjected to SDS-PAGE electrophoresis, and pIkB-α protein contents in the extracts were analyzed by Coomassie brilliant blue (CBB) staining and Western-Blot method. [ Result] The simple LPS group showed the highest pIkB-α protein level, and in the EPS concentration range of 0 -200 μg/ml, the expression level of pIkB-α pro- tein was improved with the increase of EPS concentration. [ Conclusion The expression level of pIkB-α protein was improved under the simulation of IEC-6 by LPS, while EPS could effectively inhibit the expression of pIkB-α protein. The expression level of pIkB-α was the lowest in the LPS +500 μg/ml EPS group.展开更多
New approaches are required to prevent the plagues of locusts that threaten crop security in many areas of the world. One such approach is to exploit the phototactic response of locusts, enabling their aggregation and...New approaches are required to prevent the plagues of locusts that threaten crop security in many areas of the world. One such approach is to exploit the phototactic response of locusts, enabling their aggregation and effective removal from agricultural sites. This study examined the effect of the dorsal rim area (DRA) of the locust compound eye on the phototactic response of locusts to spectral light. Locusts with intact DRA showed increased phototactic responses to blue, green or orange light but decreased responses to UV and violet light, whereas locusts with blacked-out DRA (non-DRA vision) showed the strongest phototactic responses to orange followed by violet light. The combined results revealed that phototactic push-pull effect triggered by responses of DRA versus non-DRA vision was strongest in response to violet light. Compound vision in the locust is the result of the synergism between DRA versus non-DRA vision, causing a push-pull phototactic effect that is most stimulated by exposure to violet light, with light intensity enhancing this effect. These results provide theoretical support for the induction of phototaxis and polarotaxis in response to light in locusts, which could be useful for the development of light-based control systems in the field.展开更多
This study investigated the influence of different linearly polarized spectrum lights on locusts polartactic response characteristics linearly polarized vector sensitivity mode and polartactic response by using linear...This study investigated the influence of different linearly polarized spectrum lights on locusts polartactic response characteristics linearly polarized vector sensitivity mode and polartactic response by using linearly polarized spectrum vector light module and experimental device.The objective was to clarify the vector sensitivity characteristics and functional effect of linearly polarized light spectrum intensity on locusts polartactic response,determine the influence specificity of linearly polarized spectrum illumination properties on locusts polarization-related behavior.When spectrum and illumination were constant,locusts polartactic response,presenting the response feature of sine and cosine function change specificity,was related to spectrum attribute.The visual acuity effect stimulated by violet spectrum was the best,whereas the optical distance modulation effect induced by orange spectrum was the strongest.When illumination was enhanced,locusts vector sensitivity mode shifted to present the specific sensitivity prompted by light intensity at long distance and inhibited by light intensity at short distance.Moreover,the regulating function of violet spectrum was the strongest,and the regulatory mutation effect of orange spectrum was the least significant.Simultaneously,locusts polartactic sensitivity to 300°vector at 100 lx,whereas to 240°vector at 1000 lx of linearly polarized violet light was the strongest.Locusts polartactic aggregation and visual tendency sensitivity to 90°vector at 100 lx,whereas to 270°vector at 1000 lx of linearly polarized violet light was the strongest.The heterogeneous regulation function of different linearly polarized spectrum couplings with light intensity led to significant variations in locusts vector sensitivity mode.This was derived from the antagonistic and specific tuning characteristics of locusts polartactic vision,reflecting the integrated output effect of locusts vector dependence regulated by linearly polarized spectrum intensity attribute.The findings were significant for the construction of pest polarization induction light sources and the investigation of the sensitive physiology pathway of locusts polarization vision.展开更多
基金Supported by Natural Science Foundation of China(31472230)Natural Science Foundation of Hebei Province(C2014407068)Fund from Science and Technology Department of Hebei Province(NO.14966610D)
文摘[ Objective] This study was conducted to investigate the mechanism of Echinacea polysaccharide (EPS) in treatment of various bacterial infection and reduction of inflammation, so as to provide a theoretical basis for clinic application of EPS. [ Method ] Nuclear protein extracted from six groups, the normal control group, the simple lipopolysaccharide (LPS) group and the EPS ( with concentrations of 50,100,200 and 500 μg/ml, respectively) + LPS groups was subjected to SDS-PAGE electrophoresis, and pIkB-α protein contents in the extracts were analyzed by Coomassie brilliant blue (CBB) staining and Western-Blot method. [ Result] The simple LPS group showed the highest pIkB-α protein level, and in the EPS concentration range of 0 -200 μg/ml, the expression level of pIkB-α pro- tein was improved with the increase of EPS concentration. [ Conclusion The expression level of pIkB-α protein was improved under the simulation of IEC-6 by LPS, while EPS could effectively inhibit the expression of pIkB-α protein. The expression level of pIkB-α was the lowest in the LPS +500 μg/ml EPS group.
基金supported by the Scientific and Technological Project of Henan Province,China(Grant No.242102111179,222102210116,222102320080)the Natural Science Foundation Project of Henan Province,China(Grant No.232300420024)the National Natural Science Foundation of China(Grant No.31772501).
文摘New approaches are required to prevent the plagues of locusts that threaten crop security in many areas of the world. One such approach is to exploit the phototactic response of locusts, enabling their aggregation and effective removal from agricultural sites. This study examined the effect of the dorsal rim area (DRA) of the locust compound eye on the phototactic response of locusts to spectral light. Locusts with intact DRA showed increased phototactic responses to blue, green or orange light but decreased responses to UV and violet light, whereas locusts with blacked-out DRA (non-DRA vision) showed the strongest phototactic responses to orange followed by violet light. The combined results revealed that phototactic push-pull effect triggered by responses of DRA versus non-DRA vision was strongest in response to violet light. Compound vision in the locust is the result of the synergism between DRA versus non-DRA vision, causing a push-pull phototactic effect that is most stimulated by exposure to violet light, with light intensity enhancing this effect. These results provide theoretical support for the induction of phototaxis and polarotaxis in response to light in locusts, which could be useful for the development of light-based control systems in the field.
基金financially supported by the Scientific and Technological Project of Henan Province,China(Grant No.242102111179,222102210116,222102320080)the Science and Technology Opening Cooperation Project of Henan,China(Grant No.172106000056)the National Natural Science Foundation of China(Grant No.31772501).
文摘This study investigated the influence of different linearly polarized spectrum lights on locusts polartactic response characteristics linearly polarized vector sensitivity mode and polartactic response by using linearly polarized spectrum vector light module and experimental device.The objective was to clarify the vector sensitivity characteristics and functional effect of linearly polarized light spectrum intensity on locusts polartactic response,determine the influence specificity of linearly polarized spectrum illumination properties on locusts polarization-related behavior.When spectrum and illumination were constant,locusts polartactic response,presenting the response feature of sine and cosine function change specificity,was related to spectrum attribute.The visual acuity effect stimulated by violet spectrum was the best,whereas the optical distance modulation effect induced by orange spectrum was the strongest.When illumination was enhanced,locusts vector sensitivity mode shifted to present the specific sensitivity prompted by light intensity at long distance and inhibited by light intensity at short distance.Moreover,the regulating function of violet spectrum was the strongest,and the regulatory mutation effect of orange spectrum was the least significant.Simultaneously,locusts polartactic sensitivity to 300°vector at 100 lx,whereas to 240°vector at 1000 lx of linearly polarized violet light was the strongest.Locusts polartactic aggregation and visual tendency sensitivity to 90°vector at 100 lx,whereas to 270°vector at 1000 lx of linearly polarized violet light was the strongest.The heterogeneous regulation function of different linearly polarized spectrum couplings with light intensity led to significant variations in locusts vector sensitivity mode.This was derived from the antagonistic and specific tuning characteristics of locusts polartactic vision,reflecting the integrated output effect of locusts vector dependence regulated by linearly polarized spectrum intensity attribute.The findings were significant for the construction of pest polarization induction light sources and the investigation of the sensitive physiology pathway of locusts polarization vision.