期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory
1
作者 Xinte WANG Juan LIU +2 位作者 Biao HU Bo ZHANG huoming shen 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1821-1840,共20页
This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is ... This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices. 展开更多
关键词 bi-directional functionally graded(FG) wave propagation dimensionless magneto-electro-elastic(MEE)nanoshell nonlocal strain gradient theory(NSGT) porosity
下载PDF
Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation
2
作者 Zhaonian LI Juan LIU +2 位作者 Biao HU Yuxing WANG huoming shen 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期35-52,共18页
This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed tha... This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates.The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined higher-order shear deformation theory.The scale effects of the nanoplates are captured by employing nonlocal strain gradient theory(NSGT).The motion equations are calculated in accordance with Hamilton’s principle.Finally,the dispersion characteristics of the nanoplates are numerically determined by using a harmonic solution.The results indicate that the nonlocal parameters(NLPs) and length scale parameters(LSPs) have exactly the opposite effects on the wave frequency.In addition,it is found that the effect of porosity volume fractions(PVFs) on the wave frequency depends on the gradient indices and damping coefficients.When these two values are small,the wave frequency increases with the volume fraction.By contrast,at larger gradient index and damping coefficient values,the wave frequency decreases as the volume fraction increases. 展开更多
关键词 scale effect functionally graded material(FGM) dispersion characteristic piezoelectric nanoplate viscoelastic foundation
下载PDF
Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions 被引量:1
3
作者 Jing WANG Yilin ZHU +2 位作者 Bo ZHANG huoming shen Juan LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第2期261-278,共18页
Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external e... Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external excitation frequency in the vicinities of the first and second natural frequencies is studied by adopting the multivariate Lindstedt-Poincaré(L-P) method. Based on the root discriminant of the frequencyamplitude equation under internal resonance conditions, theoretical analyses are performed to investigate the scale effects of the resonance region and the critical external excitation amplitude. Numerical results show that the region of internal resonance is related to the amplitude of the external excitation. Particularly, the internal resonance disappears after a certain critical value of the external excitation amplitude is reached.It is also shown that the scale parameters, i.e., the nonlocal parameters and the material characteristic length parameters, respectively, reduce and increase the critical amplitude,leading to a promotion or suppression of the occurrence of internal resonance. In addition,the scale parameters affect the size of the enclosed loop of the bifurcated solution curves as well by changing their intersection, divergence, or tangency. 展开更多
关键词 scale effect AXIALLY MOVING nanobeam internal RESONANCE CRITICAL AMPLITUDE
下载PDF
Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects 被引量:1
4
作者 Bo ZHANG huoming shen +2 位作者 Juan LIU Yuxing WANG Yingrong ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第4期515-548,共34页
In this paper, multi-scale modeling for nanobeams with large deflection is conducted in the framework of the nonlocal strain gradient theory and the Euler-Bernoulli beam theory with exact bending curvature. The propos... In this paper, multi-scale modeling for nanobeams with large deflection is conducted in the framework of the nonlocal strain gradient theory and the Euler-Bernoulli beam theory with exact bending curvature. The proposed size-dependent nonlinear beam model incorporates structure-foundation interaction along with two small scale parameters which describe the stiffness-softening and stiffness-hardening size effects of nanomaterials, respectively. By applying Hamilton's principle, the motion equation and the associated boundary condition are derived. A two-step perturbation method is introduced to handle the deep postbuckling and nonlinear bending problems of nanobeams analytically. Afterwards, the influence of geometrical, material, and elastic foundation parameters on the nonlinear mechanical behaviors of nanobeams is discussed. Numerical results show that the stability and precision of the perturbation solutions can be guaranteed, and the two types of size effects become increasingly important as the slenderness ratio increases. Moreover, the in-plane conditions and the high-order nonlinear terms appearing in the bending curvature expression play an important role in the nonlinear behaviors of nanobeams as the maximum deflection increases. 展开更多
关键词 nanobeam NONLOCAL strain gradient theory TWO-STEP PERTURBATION method deep POSTBUCKLING
下载PDF
Study on wave dispersion characteristics of piezoelectric sandwich nanoplates considering surface effects
5
作者 Biao HU Juan LIU +3 位作者 Yuxing WANG Bo ZHANG Jing WANG huoming shen 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第9期1339-1354,共16页
In this study,the wave propagation properties of piezoelectric sandwich nanoplates deposited on an orthotropic viscoelastic foundation are analyzed by considering the surface effects(SEs).The nanoplates are composed o... In this study,the wave propagation properties of piezoelectric sandwich nanoplates deposited on an orthotropic viscoelastic foundation are analyzed by considering the surface effects(SEs).The nanoplates are composed of a composite layer reinforced by graphene and two piezoelectric surface layers.Utilizing the modified Halpin-Tsai model,the material parameters of composite layers are obtained.The displacement field is determined by the sinusoidal shear deformation theory(SSDT).The Euler-Lagrange equation is derived by employing Hamilton’s principle and the constitutive equations of piezoelectric layers considering the SEs.Subsequently,the nonlocal strain gradient theory(NSGT)is used to obtain the equations of motion.Next,the effects of scale parameters,graphene distribution,orthotropic viscoelastic foundation,and SEs on the propagation behavior are numerically examined.The results reveal that the wave frequency is a periodic function of the orthotropic angle.Furthermore,the wave frequency increases with the increase in the SEs. 展开更多
关键词 surface effect(SE) scale parameters orthotropic foundation functional gradient graphene piezoelectric sandwich nanoplate
下载PDF
Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory 被引量:1
6
作者 Biao Hu Juan Liu +2 位作者 Yuxing Wang Bo Zhang huoming shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第9期1446-1456,I0003,共12页
Αn analytical method is developed to explore the wave propagation characteristics of piezoelectric sandwich nanoplates in the present work.The sandwich nanoplates are composed of a graphene reinforced composite core ... Αn analytical method is developed to explore the wave propagation characteristics of piezoelectric sandwich nanoplates in the present work.The sandwich nanoplates are composed of a graphene reinforced composite core layer with two piezoelectric surface layers exposed to electric field.The material properties of the nanocomposite layer are given by the Halpin–Tsai model and mixture’s rule.The Euler–Lagrange equation of the nanoplates is obtained by Hamilton's principle and first-order shear deformation theory.Then,combining the high-order nonlocal strain gradient theory with the hygrothermal constitutive relationship of composite nanoplates,the nonlocal governing equations are presented.Finally,numerical studies are conducted to demonstrate the influences of scale parameters,applied external voltage,temperature variation,moisture variation,graphene size,and weight fraction on wave frequency.The results reveal that low-order and high-order nonlocal parameters and length scale parameters have different effects on wave frequency.The wave frequency can be reduced by increasing temperature and the thickness of graphene.This could facilitate the investigation of the dynamic properties of graphene nanocomposite structures. 展开更多
关键词 Wave propagation High-order nonlocal strain gradient theory Piezoelectric sandwich nanoplates Graphene platelets Hygrothermal environment
原文传递
Wave Propagation in Graphene Platelet-Reinforced Piezoelectric Sandwich Composite Nanoplates with Nonlocal Strain Gradient Effects 被引量:1
7
作者 Biao Hu Juan Liu +1 位作者 Bo Zhang huoming shen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第4期494-505,共12页
This research develops an analytical approach to explore the wave propagation problem of piezoelectric sandwich nanoplates.The core of the sandwich nanoplates is a nanocomposite layer reinforced with graphene platelet... This research develops an analytical approach to explore the wave propagation problem of piezoelectric sandwich nanoplates.The core of the sandwich nanoplates is a nanocomposite layer reinforced with graphene platelets,which is integrated by two piezoelectric layers exposed to electric field.The material properties of nanocomposite layer are obtained by the Halpin–Tsai model and the rule of mixtures.The Euler–Lagrange equations of nanoplates are derived from Hamilton’s principle.By using the nonlocal strain gradient theory,the nonlocal governing equations are presented.Finally,numerical studies are conducted to demonstrate the influences of propagation angle,small-scale and external loads on wave frequency.The results reveal that the frequency changes periodically with the propagation angle and can be reduced by increasing voltage,temperature and the thickness of graphene platelets. 展开更多
关键词 Wave propagation Nonlocal strain gradient theory Piezoelectric sandwich nanoplates Graphene platelets
原文传递
Nonlinear Bending Analysis of Functionally Graded CNT-Reinforced Shallow Arches Placed on Elastic Foundations
8
作者 Yuanyuan Zhang Bo Zhang +3 位作者 huoming shen Yuxing Wang Xin Zhang Juan Liu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第2期164-186,共23页
This research explores the nonlinear bending behaviors of functionally graded carbon nanotube-reinforced(FG-CNTR)shallow arches with unmovable simply supported ends and clarnped-clamped ends;these arches are subjected... This research explores the nonlinear bending behaviors of functionally graded carbon nanotube-reinforced(FG-CNTR)shallow arches with unmovable simply supported ends and clarnped-clamped ends;these arches are subjected to a uniform radial pressure and rest on a nonlinear elastic foundation.The temperature-dependent material properties of the arches are considered.Within the framework of Reddy shear deformation theory possessing von Karman nonlinearity,the motion equations and boundary conditions for the FG-CNTR arches are determined by the Euler-Lagrange variational principle.Then,a two-step perturbation technique is adopted to determine the load-deflection relationship analytically.To verify the validity of the developed model and related perturbation solutions,a numerical investigation is conducted for shallow arches with five distribution patterns of carbon nanotube(CNT)reinforcements uniaxially aligned in the axial direction.Finally,the influences of various factors,including the elastic foundation,layout type,and volume fraction of CNTs and geometric factors,on the nonlinear behaviors of FG-CNTR shallow arches are examined.The obtained results show that the load deflection curves exhibit less snap-through instability as the CNT volume fraction increases.The transverse shear stress versus the thickness of FG-CNTR shallow arches is markedly affected by the layout type and content of reinforcements. 展开更多
关键词 Nonlinear bending.Carbon nanotube-reinforced composites Shallow arches Two-step perturbation technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部