Breaker fluids are designed to dissolve filter cakes by breaking their long-chain molecules,thereby removing solid deposits on the wellbore wall.Although breaker fluids are not intended to infiltrate the hydrocarbon r...Breaker fluids are designed to dissolve filter cakes by breaking their long-chain molecules,thereby removing solid deposits on the wellbore wall.Although breaker fluids are not intended to infiltrate the hydrocarbon reservoir,they can invade and cause formation damage by altering sandstone reservoirs'wettability and relative permeability.This can lead to a reduction in the overall reservoir performance.This study coupled tripartite methods to investigate the potential impact of breaker invasion and transport in hydrocarbon reservoirs and its multiscale effect on the performances of sandstone reservoirs.We utilized experimental,analytical,and numerical methods to assess and predict the susceptibility of reservoirs to breaker fluid invasion and transportation.Our experimental and empirical investigations considered varying breaker fluid formulations to evaluate the effects of breaker fluid concentration,formation temperature,and solution gas-oil ratio(GOR)on residual-oil saturation(ROS)and oil-water relative permeability.By adopting the ROS and relative permeability associated with the 50%v/v breaker fluid mixture,the performance of the hydrocarbon reservoir was numerically simulated under the limiting scenarios of no-invasion,moderate-invasion,and deep-invasion of breaker fluid.The results indicate a positive correlation between breaker fluid concentration and ROS,highlighting the risks that breaker fluid invasion and deep infiltration pose to hydrocarbon recovery.Further,results show that both live-oil condition(LOC)and dead-oil condition(DOC)reservoirs are susceptible to the detrimental impacts of breaker fluid infiltration,while their invasion can reduce hydrocarbon recovery in both LOC(-6%)and DOC(-28%).The multi-scale effects on reservoir performance are more pronounced at near-wellbore and DOC than at far-field and LOC.Findings from this work provide valuable insights into the complexity of breaker-fluid invasion in sandstone reservoirs and the mitigation of associated risks to reservoir performance.展开更多
Adopting the FAIR Guidelines—that data should be Findable, Accessible, Interoperable and Reusable(FAIR)—in the health data system in Nigeria will help protect data against use by unauthorised parties, while also mak...Adopting the FAIR Guidelines—that data should be Findable, Accessible, Interoperable and Reusable(FAIR)—in the health data system in Nigeria will help protect data against use by unauthorised parties, while also making data more accessible to legitimate users. However, little is known about the FAIR Guidelines and their compatibility with data and health laws and policies in Nigeria. This study assesses the governance framework for digital and health/e Health policies in Nigeria and explores the possibility of a policy window opening for the FAIR Guidelines to be adopted and implemented in Nigeria’s e Health sector. Ten Nigerian policy documents were examined for mention of the FAIR Guidelines(or FAIR Equivalent terminology) and the 15 sub-criteria or facets. The analysis found that although the FAIR Guidelines are not explicitly mentioned, 70% of the documents contain FAIR Equivalent terminology. The Nigeria Data Protection Regulation contained the most FAIR Equivalent principles(73%) and some of the remaining nine documents also contained some FAIR Equivalent principles(between 0–60%). Accordingly, it can be concluded that a policy window is open for the FAIR Guidelines to be adopted and implemented in Nigeria’s e Health sector.展开更多
文摘Breaker fluids are designed to dissolve filter cakes by breaking their long-chain molecules,thereby removing solid deposits on the wellbore wall.Although breaker fluids are not intended to infiltrate the hydrocarbon reservoir,they can invade and cause formation damage by altering sandstone reservoirs'wettability and relative permeability.This can lead to a reduction in the overall reservoir performance.This study coupled tripartite methods to investigate the potential impact of breaker invasion and transport in hydrocarbon reservoirs and its multiscale effect on the performances of sandstone reservoirs.We utilized experimental,analytical,and numerical methods to assess and predict the susceptibility of reservoirs to breaker fluid invasion and transportation.Our experimental and empirical investigations considered varying breaker fluid formulations to evaluate the effects of breaker fluid concentration,formation temperature,and solution gas-oil ratio(GOR)on residual-oil saturation(ROS)and oil-water relative permeability.By adopting the ROS and relative permeability associated with the 50%v/v breaker fluid mixture,the performance of the hydrocarbon reservoir was numerically simulated under the limiting scenarios of no-invasion,moderate-invasion,and deep-invasion of breaker fluid.The results indicate a positive correlation between breaker fluid concentration and ROS,highlighting the risks that breaker fluid invasion and deep infiltration pose to hydrocarbon recovery.Further,results show that both live-oil condition(LOC)and dead-oil condition(DOC)reservoirs are susceptible to the detrimental impacts of breaker fluid infiltration,while their invasion can reduce hydrocarbon recovery in both LOC(-6%)and DOC(-28%).The multi-scale effects on reservoir performance are more pronounced at near-wellbore and DOC than at far-field and LOC.Findings from this work provide valuable insights into the complexity of breaker-fluid invasion in sandstone reservoirs and the mitigation of associated risks to reservoir performance.
基金VODAN-Africathe Philips Foundation+2 种基金the Dutch Development Bank FMOCORDAIDthe GO FAIR Foundation for supporting this research
文摘Adopting the FAIR Guidelines—that data should be Findable, Accessible, Interoperable and Reusable(FAIR)—in the health data system in Nigeria will help protect data against use by unauthorised parties, while also making data more accessible to legitimate users. However, little is known about the FAIR Guidelines and their compatibility with data and health laws and policies in Nigeria. This study assesses the governance framework for digital and health/e Health policies in Nigeria and explores the possibility of a policy window opening for the FAIR Guidelines to be adopted and implemented in Nigeria’s e Health sector. Ten Nigerian policy documents were examined for mention of the FAIR Guidelines(or FAIR Equivalent terminology) and the 15 sub-criteria or facets. The analysis found that although the FAIR Guidelines are not explicitly mentioned, 70% of the documents contain FAIR Equivalent terminology. The Nigeria Data Protection Regulation contained the most FAIR Equivalent principles(73%) and some of the remaining nine documents also contained some FAIR Equivalent principles(between 0–60%). Accordingly, it can be concluded that a policy window is open for the FAIR Guidelines to be adopted and implemented in Nigeria’s e Health sector.