<span style="font-family:Verdana;">Aminoethanoic acid undergoes condensation with 1,4-benzenedicarboxaldehyde</span><span><span><span style="font-family:""><sp...<span style="font-family:Verdana;">Aminoethanoic acid undergoes condensation with 1,4-benzenedicarboxaldehyde</span><span><span><span style="font-family:""><span style="font-family:Verdana;"> to form an O, N, N, O donor Schiff base, </span><i><span style="font-family:Verdana;">N,N'</span></i><span style="font-family:Verdana;">-di(carboxymethylene)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">terephthalaldehyde, Ligand L. Coordination compounds of this Schiff base us</span><span><span style="font-family:Verdana;">ing Ni (II), Cu (II), </span><span style="font-family:Verdana;">VO</span><span style="font-family:Verdana;"> (IV) and Co (II) were then obtained </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;">. The</span></span><span style="font-family:Verdana;"> Schiff base and the complexes were evaluated for their antimicrobial and DNA binding abilities. Molecular docking studies of the ligand and synthesized compounds were also carried out. Evidence for the formation of the Schiff base coordination compounds and the coordinating atoms was obtained from </span><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">H NMR, infrared and ultraviolet spectral data, EDX, EDTA complexometric titration and magnetic susceptibility measurement. The results obtained are consistent with octahedral geometry for Ni (II) complex</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the metal ion coordinating to one molecule of Ligand L</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> with additional coordination with two oxygen atoms of two molecules of the solvent. A square-planar geometry was suggested for both Co (II), and Cu (II) complexes and a five-coordinate, square pyramidal geometry for the VO (IV) complex. The results further indicated that the carboxylic acid of Ligand L was not deprotonated both in the free base and also the complexes. In addition, the results showed that Compound 2 elicited the best antimicrobial activity potential. Generally, the compounds exhibited considerable good affinity to CT-DNA.</span></span></span>展开更多
文摘<span style="font-family:Verdana;">Aminoethanoic acid undergoes condensation with 1,4-benzenedicarboxaldehyde</span><span><span><span style="font-family:""><span style="font-family:Verdana;"> to form an O, N, N, O donor Schiff base, </span><i><span style="font-family:Verdana;">N,N'</span></i><span style="font-family:Verdana;">-di(carboxymethylene)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">terephthalaldehyde, Ligand L. Coordination compounds of this Schiff base us</span><span><span style="font-family:Verdana;">ing Ni (II), Cu (II), </span><span style="font-family:Verdana;">VO</span><span style="font-family:Verdana;"> (IV) and Co (II) were then obtained </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;">. The</span></span><span style="font-family:Verdana;"> Schiff base and the complexes were evaluated for their antimicrobial and DNA binding abilities. Molecular docking studies of the ligand and synthesized compounds were also carried out. Evidence for the formation of the Schiff base coordination compounds and the coordinating atoms was obtained from </span><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">H NMR, infrared and ultraviolet spectral data, EDX, EDTA complexometric titration and magnetic susceptibility measurement. The results obtained are consistent with octahedral geometry for Ni (II) complex</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the metal ion coordinating to one molecule of Ligand L</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> with additional coordination with two oxygen atoms of two molecules of the solvent. A square-planar geometry was suggested for both Co (II), and Cu (II) complexes and a five-coordinate, square pyramidal geometry for the VO (IV) complex. The results further indicated that the carboxylic acid of Ligand L was not deprotonated both in the free base and also the complexes. In addition, the results showed that Compound 2 elicited the best antimicrobial activity potential. Generally, the compounds exhibited considerable good affinity to CT-DNA.</span></span></span>