As the key driven factor of hydrological cycles and global energy transfer processes, water vapour in the atmosphere is important for observing and understanding climatic system changes. In this study, we utilized the...As the key driven factor of hydrological cycles and global energy transfer processes, water vapour in the atmosphere is important for observing and understanding climatic system changes. In this study, we utilized the multi-dimensional Kolmogorov-Zurbenko filter (KZ filter) to assimilate a near-global high-resolution (monthly 1°?× 1°?grid) humidity climate observation database that provided consistent humidity estimates from 1973 onwards;then we examined the global humidity movements based on different temporal scales that separated out according to the average spectral features of specific humidity data. Humidity climate components were restored with KZ filters to represent the long-term trends and El Nino-like interannual movements. Movies of thermal maps based on these two climate components were used to visualize the water vapour fluctuation patterns over the Earth. Current results suggest that increases in water vapour are found over a large part of the oceans and the land of Eurasia, and the most confirmed increasing pattern is over the south part of North Atlantic and around the India subcontinent;meanwhile, the surface moisture levels over lands of south hemisphere are becoming less.展开更多
The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weat...The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weather stations could be decomposed as components with different time scales based on their spectral distribution. Kolmogorov-Zurbenko (KZ) filters were applied to smooth and interpolate gridded temperature data to construct global maps for long-term (≥ 6 years) trends and El Nino-like (2 to 5 years) movements over the time period of 1893 to 2008. Annual temperature seasonality, latitude and altitude effects have been carefully accounted for to capture meaningful spatiotemporal patterns of climate variability. The result revealed striking facts about global temperature anomalies for specific regions. Correlation analysis and the movie of thermal maps for El Nino-like component clearly supported the existence of such climate fluctuations in time and space.展开更多
文摘As the key driven factor of hydrological cycles and global energy transfer processes, water vapour in the atmosphere is important for observing and understanding climatic system changes. In this study, we utilized the multi-dimensional Kolmogorov-Zurbenko filter (KZ filter) to assimilate a near-global high-resolution (monthly 1°?× 1°?grid) humidity climate observation database that provided consistent humidity estimates from 1973 onwards;then we examined the global humidity movements based on different temporal scales that separated out according to the average spectral features of specific humidity data. Humidity climate components were restored with KZ filters to represent the long-term trends and El Nino-like interannual movements. Movies of thermal maps based on these two climate components were used to visualize the water vapour fluctuation patterns over the Earth. Current results suggest that increases in water vapour are found over a large part of the oceans and the land of Eurasia, and the most confirmed increasing pattern is over the south part of North Atlantic and around the India subcontinent;meanwhile, the surface moisture levels over lands of south hemisphere are becoming less.
文摘The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weather stations could be decomposed as components with different time scales based on their spectral distribution. Kolmogorov-Zurbenko (KZ) filters were applied to smooth and interpolate gridded temperature data to construct global maps for long-term (≥ 6 years) trends and El Nino-like (2 to 5 years) movements over the time period of 1893 to 2008. Annual temperature seasonality, latitude and altitude effects have been carefully accounted for to capture meaningful spatiotemporal patterns of climate variability. The result revealed striking facts about global temperature anomalies for specific regions. Correlation analysis and the movie of thermal maps for El Nino-like component clearly supported the existence of such climate fluctuations in time and space.