It has been a mystery that the detected fluorescence intensity of single MEH-PPV molecules is much lower than expected based on their chain length.In this review,after re-evaluating of the literature data in the light...It has been a mystery that the detected fluorescence intensity of single MEH-PPV molecules is much lower than expected based on their chain length.In this review,after re-evaluating of the literature data in the light of new specially designed experiments,we present a comprehensive explanation of this issue:The actual size of MEH-PPV molecules at single molecule level is much smaller than expected due to de-aggregation and chain scission,while static quenching("dark matter")also exists for large molecules,further reducing their brightness.展开更多
基金supported by the National Natural Science Foun-dation of China(NSFC Nos.22073046 and 62011530133)the Fundamental Research Funds for the Central Universities(020514380256 and 020514380278)+1 种基金the State Key Laboratory of Analytical Chemistry for Life Science(SKLACL2217)The authors are also grateful to the STINT China-Sweden mobility program CH2019-8329 and the Swedish Research Council(2020-03530).
文摘It has been a mystery that the detected fluorescence intensity of single MEH-PPV molecules is much lower than expected based on their chain length.In this review,after re-evaluating of the literature data in the light of new specially designed experiments,we present a comprehensive explanation of this issue:The actual size of MEH-PPV molecules at single molecule level is much smaller than expected due to de-aggregation and chain scission,while static quenching("dark matter")also exists for large molecules,further reducing their brightness.