期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fault diagnosis method of track circuit based on KPCA-SAE 被引量:2
1
作者 jin zuchen DONG Yu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期89-95,共7页
At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to an... At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to analyze the data.Therefore,we introduce kernel principal component analysis and stacked auto-encoder network(KPCA-SAD)into the fault diagnosis of ZPW-2000 track circuit.According to the working principle and fault characteristics of track circuit,a fault diagnosis model of KPCA-SAE network is established.The relevant parameters of key components recorded in the data collected by field staff are used as the fault feature parameters.The KPCA method is used to reduce the dimension and noise of fault document matrix to avoid information redundancy.The SAE network is trained by the processed fault data.The model parameters are optimized overall by using back propagation(BP)algorithm.The KPCA-SAE model is simulated in Matlab platform and is finally proved to be effective and feasible.Compared with the traditional method of artificially analyzing fault data and other intelligent algorithms,the KPCA-SAE based classifier has higher fault identification accuracy. 展开更多
关键词 ZPW-2000 track circuit fault diagnosis stacked auto-encoder(SAE) kernel principal component analysis(KPCA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部