Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition.Diabetic peripheral neuropathy,a common complication of dia...Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition.Diabetic peripheral neuropathy,a common complication of diabetes,is characterized by nerve damage due to high blood sugar levels that lead to symptoms,such as pain,tingling,and numbness,primarily in the hands and feet.The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy,while also examining recent developments in this domain.The investigation encompassed an array of neuromodulation methods,including frequency rhythmic electrical modulated systems,dorsal root ganglion stimulation,and spinal cord stimulation.This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy.Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments.Through these efforts,we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.展开更多
Autism spectrum disorder is classified as a spectrum of neurodevelopmental disorders with an unknown definitive etiology.Individuals with autism spectrum disorder show deficits in a variety of areas including cognitio...Autism spectrum disorder is classified as a spectrum of neurodevelopmental disorders with an unknown definitive etiology.Individuals with autism spectrum disorder show deficits in a variety of areas including cognition,memory,attention,emotion recognition,and social skills.With no definitive treatment or cure,the main interventions for individuals with autism spectrum disorder are based on behavioral modulations.Recently,noninvasive brain modulation techniques including repetitive transcranial magnetic stimulation,intermittent theta burst stimulation,continuous theta burst stimulation,and transcranial direct current stimulation have been studied for their therapeutic properties of modifying neuroplasticity,particularly in individuals with autism spectrum disorder.Preliminary evidence from small cohort studies,pilot studies,and clinical trials suggests that the various noninvasive brain stimulation techniques have therapeutic benefits for treating both behavioral and cognitive manifestations of autism spectrum disorder.However,little data is available for quantifying the clinical significance of these findings as well as the long-term outcomes of individuals with autism spectrum disorder who underwent transcranial stimulation.The objective of this review is to highlight the most recent advancements in the application of noninvasive brain modulation technology in individuals with autism spectrum disorder.展开更多
Cell-based models are a promising tool in deciphering the molecular mechanisms underlying the pathogenesis of neurological disorders as well as aiding in the discovery and development of future drug therapies.The grea...Cell-based models are a promising tool in deciphering the molecular mechanisms underlying the pathogenesis of neurological disorders as well as aiding in the discovery and development of future drug therapies.The greatest challenge is creating cell-based models that encapsulate the vast phenotypic presentations as well as the underlying genotypic etiology of these conditions.In this article,we discuss the recent advancements in cell-based models for understanding the pathophysiology of neurological disorders.We reviewed studies discussing the progression of cell-based models to the advancement of three-dimensional models and organoids that provide a more accurate model of the pathophysiology of neurological disorders in vivo.The better we understand how to create more precise models of the neurological system,the sooner we will be able to create patient-specific models and large libraries of these neurological disorders.While three-dimensional models can be used to discover the linking factors to connect the varying phenotypes,such models will also help to understand the early pathophysiology of these neurological disorders and how they are affected by their environment.The three-dimensional cell models will allow us to create more specific treatments and uncover potentially preventative measures in neurological disorders such as autism spectrum disorder,Parkinson’s disease,Alzheimer’s disease,and amyotrophic lateral sclerosis.展开更多
Cochlear implants(CI) are widely used to provide auditory rehabilitation to individuals with moderate to severe sensorineural hearing loss(Eshraghi et al., 2012). The scala tympani(ST) of the cochlea is the site of im...Cochlear implants(CI) are widely used to provide auditory rehabilitation to individuals with moderate to severe sensorineural hearing loss(Eshraghi et al., 2012). The scala tympani(ST) of the cochlea is the site of implantation of the intracochlear electrode array.展开更多
文摘Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition.Diabetic peripheral neuropathy,a common complication of diabetes,is characterized by nerve damage due to high blood sugar levels that lead to symptoms,such as pain,tingling,and numbness,primarily in the hands and feet.The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy,while also examining recent developments in this domain.The investigation encompassed an array of neuromodulation methods,including frequency rhythmic electrical modulated systems,dorsal root ganglion stimulation,and spinal cord stimulation.This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy.Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments.Through these efforts,we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.
基金supported by translational grant from the HERA Foundation(to AAE).
文摘Autism spectrum disorder is classified as a spectrum of neurodevelopmental disorders with an unknown definitive etiology.Individuals with autism spectrum disorder show deficits in a variety of areas including cognition,memory,attention,emotion recognition,and social skills.With no definitive treatment or cure,the main interventions for individuals with autism spectrum disorder are based on behavioral modulations.Recently,noninvasive brain modulation techniques including repetitive transcranial magnetic stimulation,intermittent theta burst stimulation,continuous theta burst stimulation,and transcranial direct current stimulation have been studied for their therapeutic properties of modifying neuroplasticity,particularly in individuals with autism spectrum disorder.Preliminary evidence from small cohort studies,pilot studies,and clinical trials suggests that the various noninvasive brain stimulation techniques have therapeutic benefits for treating both behavioral and cognitive manifestations of autism spectrum disorder.However,little data is available for quantifying the clinical significance of these findings as well as the long-term outcomes of individuals with autism spectrum disorder who underwent transcranial stimulation.The objective of this review is to highlight the most recent advancements in the application of noninvasive brain modulation technology in individuals with autism spectrum disorder.
文摘Cell-based models are a promising tool in deciphering the molecular mechanisms underlying the pathogenesis of neurological disorders as well as aiding in the discovery and development of future drug therapies.The greatest challenge is creating cell-based models that encapsulate the vast phenotypic presentations as well as the underlying genotypic etiology of these conditions.In this article,we discuss the recent advancements in cell-based models for understanding the pathophysiology of neurological disorders.We reviewed studies discussing the progression of cell-based models to the advancement of three-dimensional models and organoids that provide a more accurate model of the pathophysiology of neurological disorders in vivo.The better we understand how to create more precise models of the neurological system,the sooner we will be able to create patient-specific models and large libraries of these neurological disorders.While three-dimensional models can be used to discover the linking factors to connect the varying phenotypes,such models will also help to understand the early pathophysiology of these neurological disorders and how they are affected by their environment.The three-dimensional cell models will allow us to create more specific treatments and uncover potentially preventative measures in neurological disorders such as autism spectrum disorder,Parkinson’s disease,Alzheimer’s disease,and amyotrophic lateral sclerosis.
基金The cochlear implant research work in Dr Eshraghi’s laboratory is supported by translational grants from MED-EL Corporation and HERA Foundation。
文摘Cochlear implants(CI) are widely used to provide auditory rehabilitation to individuals with moderate to severe sensorineural hearing loss(Eshraghi et al., 2012). The scala tympani(ST) of the cochlea is the site of implantation of the intracochlear electrode array.