期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Maraviroc promotes recovery from traumatic brain injury in mice by suppression of neuroinflammation and activation of neurotoxic reactive astrocytes 被引量:2
1
作者 Xi-Lei Liu Dong-Dong Sun +13 位作者 Mu-Tian Zheng Xiao-Tian Li Han-Hong Niu Lan Zhang Zi-Wei Zhou Hong-Tao Rong Yi wang ji-wei wang Gui-Li Yang Xiao Liu Fang-Lian Chen Yuan Zhou Shu Zhang Jian-Ning Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期141-149,共9页
Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a ... Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI. 展开更多
关键词 C-C chemokine receptor type 5(CCR5)antagonist high mobility group protein B1(HMGB1) MARAVIROC M1 microglia nuclear factor-κB pathway NACHT LRR and PYD domains-containing protein 3(NLRP3)inflammasome NEUROINFLAMMATION neurological function neurotoxic reactive astrocytes traumatic brain injury
下载PDF
放电等离子烧结Fe-Al混合粉的显微组织演化及烧结动力学(英文)
2
作者 李瑞迪 袁铁锤 +4 位作者 刘晓军 王基维 吴宏 曾凡浩 周祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1594-1601,共8页
研究了Fe与Al混合粉在放电等离子烧结(SPS)作用下的反应扩散行为。采用X射线衍射及扫描电镜对显微组织演化进行了分析,并揭示了烧结动力学行为。结果表明在SPS温度773~873 K下,Fe2Al5为反应中间相。尽管电流可以提高材料扩散速度,球磨... 研究了Fe与Al混合粉在放电等离子烧结(SPS)作用下的反应扩散行为。采用X射线衍射及扫描电镜对显微组织演化进行了分析,并揭示了烧结动力学行为。结果表明在SPS温度773~873 K下,Fe2Al5为反应中间相。尽管电流可以提高材料扩散速度,球磨处理可在粉体中产生大量点阵缺陷及晶粒边界,使反应动力学速度得到提高。球磨后,相变动力学速度从球磨前的4.56×10^(-3)提高到0.207。而且,本研究揭示了焦耳热产生行为。作为电流通道,阻抗是重要的焦耳热源。SPS过程中粉末颗粒、模具、冲头、石墨纸之间界面阻抗是焦耳热产生的重要来源。 展开更多
关键词 Fe-Al混合粉 放电等离子烧结 烧结动力学 扩散 反应 焦耳热
下载PDF
Cognitive impairment after traumatic brain injury is associated with reduced long-term depression of excitatory postsynaptic potential in the rat hippocampal dentate gyrus 被引量:1
3
作者 Bao-Liang Zhang Yue-Shan Fan +5 位作者 ji-wei wang Zi-Wei Zhou Yin-Gang Wu Meng-Chen Yang Dong-Dong Sun Jian-Ning Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1753-1758,共6页
Traumatic brain injury can cause loss of neuronal tissue, remote symptomatic epilepsy, and cognitive deficits. However, the mechanisms underlying the effects of traumatic brain injury are not yet clear. Hippocampal ex... Traumatic brain injury can cause loss of neuronal tissue, remote symptomatic epilepsy, and cognitive deficits. However, the mechanisms underlying the effects of traumatic brain injury are not yet clear. Hippocampal excitability is strongly correlated with cognitive dysfunction and remote symptomatic epilepsy. In this study, we examined the relationship between traumatic brain injury-induced neuronal loss and subsequent hippocampal regional excitability. We used hydraulic percussion to generate a rat model of traumatic brain injury. At 7 days after injury, the mean modified neurological severity score was 9.5, suggesting that the neurological function of the rats was remarkably impaired. Electrophysiology and immunocytochemical staining revealed increases in the slope of excitatory postsynaptic potentials and long-term depression(indicating weakened long-term inhibition), and the numbers of cholecystokinin and parvalbumin immunoreactive cells were clearly reduced in the rat hippocampal dentate gyrus. These results indicate that interneuronal loss and changes in excitability occurred in the hippocampal dentate gyrus. Thus, traumatic brain injury-induced loss of interneurons appears to be associated with reduced long-term depression in the hippocampal dentate gyrus. 展开更多
关键词 脑损害 刺激性 创伤 海马 老鼠 回转 牙齿 PARVALBUMIN
下载PDF
Development of self-generated proppant based on modified low-density and low-viscosity epoxy resin and its evaluation
4
作者 Jia-Cheng Fan Zhan-Qing Qu +6 位作者 Tian-Kui Guo Ning Qi Ming Chen Jian Hou Ji-Jiang Ge Xiao-Qiang Liu ji-wei wang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2240-2252,共13页
Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performanc... Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performance.The increasing depth of fractured oil and gas reservoirs is causing growing difficulty in hydraulic fracturing.Moreover,the migration of conventional proppants within the fracture is always limited due to small fracture width and rigid proppant structure.Thus,proppants with good transportation capacity and fracture propping effects are needed.First,a novel self-generated proppant based on toughened low-viscosity and low-density epoxy resin was developed to satisfy this demand.Then,proppant performances were evaluated.Low-viscosity and low-density epoxy resin was generated when the thiol-ene click chemical reaction product of eugenol and 1-thioglycerol reacts with the epichlorohydrin.Then,the resin was toughened with graphite particles to increase its compressive strength from50.8 to 72.1 MPa based on micro-cracking mechanism and crazing-nail anchor mechanism.The adduct of diethylene triamine and butyl glycidyl ether and the Si O2 nanoparticles were treated as the curing agent and emulsifier respectively to form the emulsion.The emulsion is transformed into solid particles of various sizes within a reservoir to prop the fracture.Evaluation shows good migration capacity of this self-generated proppant due to the low density of epoxy resin. 展开更多
关键词 Low-viscosity and low-density epoxy resin Resin toughening Self-generated proppant Performance evaluation
下载PDF
NO_(x) removal by non-thermal plasma reduction:experimental and theoretical investigations
5
作者 Yue Liu ji-wei wang +4 位作者 Jian Zhang Ting-Ting Qi Guang-Wen Chu Hai-Kui Zou Bao-Chang Sun 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第10期1476-1484,共9页
Green and efficient NO_(x)removal at low temperature is still desired.NO_(x)removal via non-thermal plasma(NTP)reduction is one of such technique.This work presents the experimental and theoretical study on the NO_(x)... Green and efficient NO_(x)removal at low temperature is still desired.NO_(x)removal via non-thermal plasma(NTP)reduction is one of such technique.This work presents the experimental and theoretical study on the NO_(x)removal via NTP reduction(NTPRD)in dielectric barrier discharge reactor(DBD).The effect of O_(2)molar fraction on NO_(x)species in the outlet of DBD,and effects of NH_(3)/NO_(x)molar ratio and discharge power of DBD on NO_(x)removal efficiency are investigated.Results indicate that anaerobic condition and higher discharge power is beneficial to direct removal of NO_(x),and the NO_(x),removal efficiency can be up to 98.5%under the optimal operating conditions.It is also found that adding NH_(3)is favorable for the reduction of NO_(x),to N_(2)at lower discharge power.In addition,the NO_(x)removal mechanism and energy consumption analysis for the NTPRD process are also studied.It is found that the reduced active species(N^(+),N^(-),N^(+),N_(2)^(*),NH_(2)^(+),etc.)generated in the NTPRD process play important roles for the reduction of NO_(x),to N_(2).Our work paves a novel pathway for NO_(x)removal from anaerobic gas in industrial application. 展开更多
关键词 NO_(x)removal NTP reduction mechanism energy consumption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部