In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel ...In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.展开更多
Two catalysts, nano-sized cobalt-metal-organic framework(Co-MOF) and nickel(Ni)-MOF, were successfully prepared by the modification method. Tetralin(C10H12) was used as the hydrogen donor for the catalytic cracking an...Two catalysts, nano-sized cobalt-metal-organic framework(Co-MOF) and nickel(Ni)-MOF, were successfully prepared by the modification method. Tetralin(C10H12) was used as the hydrogen donor for the catalytic cracking and hydrogenation modification study of the dehydrated crude oil from the Shengli Oilfield. The optimal reaction conditions were determined through orthogonal experiments, and the components of the crude oil and modified oil samples were analyzed. The results revealed that the nanoMOF catalysts were successfully prepared and exhibited high catalytic activity. They could catalyze the cracking of large molecules in heavy oil at mild temperatures(<300°C), leading to the decomposition of the hydrogen donor. When the mass fraction of the catalyst was 0.2%, the mass fraction of the hydrogen donor was 1%, and the reaction temperature was 280°C, the Ni-MOF showed the best catalytic viscosity reduction effect. It could reduce the viscosity of heavy oil at 50°C from 15761.9 m Pa.s to 1266.2 m Pa.s,with a viscosity reduction rate of 91.97%. The modification effect of Co-MOF was the next best, which could reduce the viscosity of heavy oil to 2500.1 m Pa.s with a viscosity reduction rate of 84.14%. Molecular dynamics simulations revealed a strong interaction force between the MOF surface and asphaltene molecules. In the process of heavy-oil catalytic hydrogenation, the nano-MOF catalyst exhibited high catalytic activity. On the one hand, the empty d orbitals outside the metal atoms in the catalyst could polarize the carbon atoms in the organic matter, accelerating the breaking of long chains. On the other hand, the metal atoms in the catalyst could bond with the carbon σ bonds, breaking the carbon-carbon bonds. This disrupted the structure of the recombined components in the crude oil, irreversibly reducing the viscosity of the heavy oil and improving its fluidity.展开更多
As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in red...As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology.展开更多
In this work,the factors affecting asphaltenes deposition in high-temperature and high-pressure wells were studied using backscattered light and PVT equipment customized to suit the well conditions.In an examination o...In this work,the factors affecting asphaltenes deposition in high-temperature and high-pressure wells were studied using backscattered light and PVT equipment customized to suit the well conditions.In an examination of the intensity of backscattered light,it was revealed that there exists a linear relationship between temperature and asphaltene precipitation within a specific temperature range.Within this range,a decrease in temperature tends to accelerate asphaltene precipitation.However,the impacts of pressure and gas-oil ratio are more pronounced.The pressure depletion induces the asphaltenes to precipitate out of the solution,followed by the formation of flocs below the bubble point.In addition,an increase in the gas-oil ratio causes a more severe asphaltene deposition,shifting the location of asphaltenes to deep well sections.展开更多
We herein present a case involving a 41-year-old woman in whom ultrasound examination revealed multiple liver hemangiomas more than 3 years ago.Follow-up ultrasound examination revealed that the masses had significant...We herein present a case involving a 41-year-old woman in whom ultrasound examination revealed multiple liver hemangiomas more than 3 years ago.Follow-up ultrasound examination revealed that the masses had significantly increased;the largest was located in the right lobe(about 8.2 cm×7.4 cm×6.0cm).Abdominal multidetector computed tomographyrevealed multiple well-circumscribed,heterogeneous,hypodense masses(largest,6.4 cm×6.3 cm×5.0cm)with significant contrast enhancement during the arterial and portal phases and with contrast washout and peripheral enhancement during the delayed phases.Magnetic resonance images demonstrated multiple well-circumscribed,heterogeneous,hypointense hepatic masses with significant contrast enhancement(largest,6.4 cm×6.5 cm×5.1 cm);multiple enlarged porta lymph nodes;and multiple s l i g h t l y e n l a rg e d re t ro p e r i t o n e a l l y m p h n o d e s.Histological and immunohistochemical examination of the right mass biopsy specimen suggested a malignant neoplasm that had originated from a neuroendocrine cell type(grade 2 well-differentiated neuroendocrine carcinoma).After performing a systemic examination to exclude metastasis from an extrahepatic primary site,we considered that the masses had arisen from a primary hepatic neuroendocrine tumor with multiple liver metastases.The patient underwent transcatheter arterial chemoembolization using a combination of oxaliplatin(150 mg)mixed with one bottle of gelatin sponge particles(560-710μm)and lipiodol(6 m L).Primary neuroendocrine tumors of the liver are extremely rare.This case is interesting because of the rarity of this neoplasm and previous misdiagnosis as multiple liver hemangiomas.Previously reported cases in the literature are also reviewed.展开更多
A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,th...A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.展开更多
Wax deposition during crude oil production,transportation,and processing has been a headache since the early days of oil utilization.It may lead to low mobility ratios,blockage of production tubing/pipelines as well a...Wax deposition during crude oil production,transportation,and processing has been a headache since the early days of oil utilization.It may lead to low mobility ratios,blockage of production tubing/pipelines as well as fouling of surface and processing facilities,among others.These snags cause massive financial constraints increasing projects’turnover.Decades of meticulous research have been dedicated to this problem that is worth a review.Thus,this paper reviews the mechanisms,experimentation,thermodynamic and kinetic modeling,prediction,and remediation techniques of wax deposition.An overall assessment suggests that available models are more accurate for single than multi-phase flows while the kind of remediation and deployment depend on the environment and severity level.In severe cases,both chemical and mechanical are synergistically deployed.Moreover,future prospective research areas that require attention are proposed.Generally,this review could be a valuable tool for novice researchers as well as a foundation for further research on this topic.展开更多
In order to obtain a multifunctional oilfield agent with both corrosion inhibition and oil displacement functions,a polymer with benzene ring structures is synthesized based on polyacrylamide(PAM)and used as inhibitor...In order to obtain a multifunctional oilfield agent with both corrosion inhibition and oil displacement functions,a polymer with benzene ring structures is synthesized based on polyacrylamide(PAM)and used as inhibitor for the first time.Methods including electrochemistry,weight loss and theoretical calculations are used to study the inhibition effect for P110 steel in 1.0 M HCl.The experimental results show that the modified polymer poly-(Z)-N-benzylidenepropionamide(PBAM)has excellent inhibition effects,and the maximum efficiency can reach 90.62%in impedance spectroscopy tests.The benzene ring structure added in the modified polymer providesπelectrons for the adsorption of inhibitor on metal surface,strengthens the adsorption,and thus brings a better corrosion inhibition effect.In addition to the corrosion inhibition performance,the viscosity-increasing effect of PBAM is evaluated.The results show that the addition of benzene ring not only enhances the corrosion inhibition effect,but also brings temperature resistance to the polymer.However,the salt tolerance of the polymer is affected,the synthesized PBAM which viscosity can above 500 m Pa s at 140℃ is suitable for high temperature and low salinity environment.The modified polyacrylamide has satisfactory corrosion inhibition and oil displacement performance,which provides a new idea for the development of oilfield chemistry.展开更多
基金support and funding from the National Natural Science Foundation of China (No.52174047)Sinopec Project (No.P21063-3)。
文摘In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.
基金financially supported by the National Natural Science Foundation of China(52174047)Sinopec Project(P21063-3).
文摘Two catalysts, nano-sized cobalt-metal-organic framework(Co-MOF) and nickel(Ni)-MOF, were successfully prepared by the modification method. Tetralin(C10H12) was used as the hydrogen donor for the catalytic cracking and hydrogenation modification study of the dehydrated crude oil from the Shengli Oilfield. The optimal reaction conditions were determined through orthogonal experiments, and the components of the crude oil and modified oil samples were analyzed. The results revealed that the nanoMOF catalysts were successfully prepared and exhibited high catalytic activity. They could catalyze the cracking of large molecules in heavy oil at mild temperatures(<300°C), leading to the decomposition of the hydrogen donor. When the mass fraction of the catalyst was 0.2%, the mass fraction of the hydrogen donor was 1%, and the reaction temperature was 280°C, the Ni-MOF showed the best catalytic viscosity reduction effect. It could reduce the viscosity of heavy oil at 50°C from 15761.9 m Pa.s to 1266.2 m Pa.s,with a viscosity reduction rate of 91.97%. The modification effect of Co-MOF was the next best, which could reduce the viscosity of heavy oil to 2500.1 m Pa.s with a viscosity reduction rate of 84.14%. Molecular dynamics simulations revealed a strong interaction force between the MOF surface and asphaltene molecules. In the process of heavy-oil catalytic hydrogenation, the nano-MOF catalyst exhibited high catalytic activity. On the one hand, the empty d orbitals outside the metal atoms in the catalyst could polarize the carbon atoms in the organic matter, accelerating the breaking of long chains. On the other hand, the metal atoms in the catalyst could bond with the carbon σ bonds, breaking the carbon-carbon bonds. This disrupted the structure of the recombined components in the crude oil, irreversibly reducing the viscosity of the heavy oil and improving its fluidity.
基金financially supported by the National Natural Science Foundation of China(52174047)Sinopec Project(P21063-3)。
文摘As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology.
基金This work was supported by the National Natural Science Foundation of China(No.52174047)the China Scholarship Council(No.202106440102)the PetroChina Strategic Cooperation Science and Technology Project(No.ZLZX 2020-01).
文摘In this work,the factors affecting asphaltenes deposition in high-temperature and high-pressure wells were studied using backscattered light and PVT equipment customized to suit the well conditions.In an examination of the intensity of backscattered light,it was revealed that there exists a linear relationship between temperature and asphaltene precipitation within a specific temperature range.Within this range,a decrease in temperature tends to accelerate asphaltene precipitation.However,the impacts of pressure and gas-oil ratio are more pronounced.The pressure depletion induces the asphaltenes to precipitate out of the solution,followed by the formation of flocs below the bubble point.In addition,an increase in the gas-oil ratio causes a more severe asphaltene deposition,shifting the location of asphaltenes to deep well sections.
文摘We herein present a case involving a 41-year-old woman in whom ultrasound examination revealed multiple liver hemangiomas more than 3 years ago.Follow-up ultrasound examination revealed that the masses had significantly increased;the largest was located in the right lobe(about 8.2 cm×7.4 cm×6.0cm).Abdominal multidetector computed tomographyrevealed multiple well-circumscribed,heterogeneous,hypodense masses(largest,6.4 cm×6.3 cm×5.0cm)with significant contrast enhancement during the arterial and portal phases and with contrast washout and peripheral enhancement during the delayed phases.Magnetic resonance images demonstrated multiple well-circumscribed,heterogeneous,hypointense hepatic masses with significant contrast enhancement(largest,6.4 cm×6.5 cm×5.1 cm);multiple enlarged porta lymph nodes;and multiple s l i g h t l y e n l a rg e d re t ro p e r i t o n e a l l y m p h n o d e s.Histological and immunohistochemical examination of the right mass biopsy specimen suggested a malignant neoplasm that had originated from a neuroendocrine cell type(grade 2 well-differentiated neuroendocrine carcinoma).After performing a systemic examination to exclude metastasis from an extrahepatic primary site,we considered that the masses had arisen from a primary hepatic neuroendocrine tumor with multiple liver metastases.The patient underwent transcatheter arterial chemoembolization using a combination of oxaliplatin(150 mg)mixed with one bottle of gelatin sponge particles(560-710μm)and lipiodol(6 m L).Primary neuroendocrine tumors of the liver are extremely rare.This case is interesting because of the rarity of this neoplasm and previous misdiagnosis as multiple liver hemangiomas.Previously reported cases in the literature are also reviewed.
基金The support from the China National High Technology Research and Development Program(No.2013AA064301)the National Natural Science Foundation of China(51274210)the Research Start-up Fund of Karamay Campus of China University of Petroleum-Beijing(XQZX20200013)is greatly appreciated.
文摘A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.
基金contributions from colleagues and support from Sinopec Company limited(Project P19018-2)the National Natural Science Foundation of China(52174047)。
文摘Wax deposition during crude oil production,transportation,and processing has been a headache since the early days of oil utilization.It may lead to low mobility ratios,blockage of production tubing/pipelines as well as fouling of surface and processing facilities,among others.These snags cause massive financial constraints increasing projects’turnover.Decades of meticulous research have been dedicated to this problem that is worth a review.Thus,this paper reviews the mechanisms,experimentation,thermodynamic and kinetic modeling,prediction,and remediation techniques of wax deposition.An overall assessment suggests that available models are more accurate for single than multi-phase flows while the kind of remediation and deployment depend on the environment and severity level.In severe cases,both chemical and mechanical are synergistically deployed.Moreover,future prospective research areas that require attention are proposed.Generally,this review could be a valuable tool for novice researchers as well as a foundation for further research on this topic.
文摘In order to obtain a multifunctional oilfield agent with both corrosion inhibition and oil displacement functions,a polymer with benzene ring structures is synthesized based on polyacrylamide(PAM)and used as inhibitor for the first time.Methods including electrochemistry,weight loss and theoretical calculations are used to study the inhibition effect for P110 steel in 1.0 M HCl.The experimental results show that the modified polymer poly-(Z)-N-benzylidenepropionamide(PBAM)has excellent inhibition effects,and the maximum efficiency can reach 90.62%in impedance spectroscopy tests.The benzene ring structure added in the modified polymer providesπelectrons for the adsorption of inhibitor on metal surface,strengthens the adsorption,and thus brings a better corrosion inhibition effect.In addition to the corrosion inhibition performance,the viscosity-increasing effect of PBAM is evaluated.The results show that the addition of benzene ring not only enhances the corrosion inhibition effect,but also brings temperature resistance to the polymer.However,the salt tolerance of the polymer is affected,the synthesized PBAM which viscosity can above 500 m Pa s at 140℃ is suitable for high temperature and low salinity environment.The modified polyacrylamide has satisfactory corrosion inhibition and oil displacement performance,which provides a new idea for the development of oilfield chemistry.