A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as ...A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.展开更多
Plasmonic metal electrodes with subwavelength nanostructures are promising for enhancing light harvesting in photovoltaics.However,the nonradiative damping of surface plasmon polaritons(SPPs)during coupling with sunli...Plasmonic metal electrodes with subwavelength nanostructures are promising for enhancing light harvesting in photovoltaics.However,the nonradiative damping of surface plasmon polaritons(SPPs)during coupling with sunlight results in the conversion of the excited hot-electrons to heat,which limits the absorption of light and generation of photocurrent.Herein,an energy recycling strategy driven by hotelectron emission for recycling the SPP energy trapped in the plasmonic electrodes is proposed.A transparent silver-based plasmonic metal electrode(A-PME)with a periodic hexagonal nanopore array is constructed,which is combined with a luminescent organic emitter for radiative recombination of the injected hot-electrons.Owing to the suppressed SPP energy loss via broadband hot-electron emission,the A-PME achieves an optimized optical transmission with an average transmittance of over 80%from 380 to 1200 nm.Moreover,the indium-tin-oxide-free organic solar cells yield an enhanced light harvestingwith a power conversion efficiency of 16.1%.展开更多
基金This work wass supported by the National Natural Science Foundation of China (No.20675074 and No.10575099).
文摘A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.
基金ARC Centre of Excellence for Future Low-Energy Electronics Technologies(FLEET)Collaborative Innovation Center of Suzhou Nano Science&Technology+3 种基金Jiangsu Provincial Research Scheme of Natural Science for Higher Education Institutions,Grant/Award Number:19KJB510056the Natural Science Foundation of Jiangsu Province of China,Grant/Award Number:BK20190815the 333 program,Grant/Award Number:BRA2019061National Natural Science Foundation of China,Grant/Award Numbers:11804084,12074104,62075061,61905171,51873138。
文摘Plasmonic metal electrodes with subwavelength nanostructures are promising for enhancing light harvesting in photovoltaics.However,the nonradiative damping of surface plasmon polaritons(SPPs)during coupling with sunlight results in the conversion of the excited hot-electrons to heat,which limits the absorption of light and generation of photocurrent.Herein,an energy recycling strategy driven by hotelectron emission for recycling the SPP energy trapped in the plasmonic electrodes is proposed.A transparent silver-based plasmonic metal electrode(A-PME)with a periodic hexagonal nanopore array is constructed,which is combined with a luminescent organic emitter for radiative recombination of the injected hot-electrons.Owing to the suppressed SPP energy loss via broadband hot-electron emission,the A-PME achieves an optimized optical transmission with an average transmittance of over 80%from 380 to 1200 nm.Moreover,the indium-tin-oxide-free organic solar cells yield an enhanced light harvestingwith a power conversion efficiency of 16.1%.