Word embedding has been widely used in word sense disambiguation(WSD)and many other tasks in recent years for it can well represent the semantics of words.However,the existing word embedding methods mostly represent e...Word embedding has been widely used in word sense disambiguation(WSD)and many other tasks in recent years for it can well represent the semantics of words.However,the existing word embedding methods mostly represent each word as a single vector,without considering the homonymy and polysemy of the word;thus,their performances are limited.In order to address this problem,an effective topical word embedding(TWE)‐based WSD method,named TWE‐WSD,is proposed,which integrates Latent Dirichlet Allocation(LDA)and word embedding.Instead of generating a single word vector(WV)for each word,TWE‐WSD generates a topical WV for each word under each topic.Effective integrating strategies are designed to obtain high quality contextual vectors.Extensive experiments on SemEval‐2013 and SemEval‐2015 for English all‐words tasks showed that TWE‐WSD outperforms other state‐of‐the‐art WSD methods,especially on nouns.展开更多
According to the standards of engineering education accreditation,the achievement paths and evaluation criteria of course goals are presented,aimed at the objectives of software engineering courses and the characteris...According to the standards of engineering education accreditation,the achievement paths and evaluation criteria of course goals are presented,aimed at the objectives of software engineering courses and the characteristics of hybrid teaching in Kunming University of Science and Technology.Then a multi-dimensional evaluation system for course goal achievement of software engineering is proposed.The practice’s results show that the multi-dimensional course goal achievement evaluation is helpful to the continuous improvement of course teaching,which can effectively support the evaluation of graduation outcomes.展开更多
With the popularity of mobile intelligent terminal, user comments of App software is viewed as one of the research interests of social computing. Faced with the massive App software, most users usually view the other ...With the popularity of mobile intelligent terminal, user comments of App software is viewed as one of the research interests of social computing. Faced with the massive App software, most users usually view the other users’ comments and marks to selecting the desired App software. Due to the freedom and randomness of the network comments, the inconsistence between the user’s comment and mark makes it difficult to choose App software. This paper presents a method by analyzing the relationships among user’s comment information, the user’s mark and App software information. Firstly, the consistency between user’s comment information and App software information is judged. Then, through analyzing the grammar relationships among the feature-words, adverbs and the feature-sentiment-words in App software’s feature-sentimentword- pairs, the user’s emotional tendency about App software is quantified quantified combining with the dictionary and the network sentiment words. After calculating the user’s comprehensive score of App software, the consistency of App software’s user comment is judged by comparing this score and the user’s mark. Finally, the experimental results show that the method is effective.展开更多
T-overlap query is the basis of set similarity query and has been applied in many important fields.Most existing approaches employ a pruning-and-verification framework,thus in low efficiency.Modern GPU has much higher...T-overlap query is the basis of set similarity query and has been applied in many important fields.Most existing approaches employ a pruning-and-verification framework,thus in low efficiency.Modern GPU has much higher parallelism as well as memory bandwidth than CPU and can be used to accelerate T-overlap query.In this paper,we use hash segmentation to divide inverted lists into segments,then design an efficient inverted index called GHSII on GPU using hash segmentation.Based on GHSII,a new segmentation parallel T-overlap algorithm,GSPS,is proposed.GSPS uses segment at a time to scan segments and uses shared memory to decrease the number of accesses to device memory.Furthermore,an optimized algorithm called GSPS-TLLO using a heuristic query order is proposed to solve the problem of load imbalance.Experiments are carried out on two real datasets and the results show that GSPS-TLLO outperforms the state-of-the-art GPU parallel T-overlap algorithms.展开更多
In order to judge whether the user reviews are relevant to App software, this paper proposed a method to judge the relevance of user reviews based on Naive Bayesian text classification and term frequency.Firstly, the ...In order to judge whether the user reviews are relevant to App software, this paper proposed a method to judge the relevance of user reviews based on Naive Bayesian text classification and term frequency.Firstly, the keywords sets of App software’s user reviews are extracted. Then, the keywords sets are optimized. Finally, the relevance score of the user reviews are calculated, and whether the user reviews are relevant is judged. Through the experiment, this method is proved that can judge the relevance of App software’s user reviews effectively.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:61562054The Fund of China Scholarship Council,Grant/Award Number:201908530036Talents Introduction Project of Guangxi University for Nationalities,Grant/Award Number:2014MDQD020。
文摘Word embedding has been widely used in word sense disambiguation(WSD)and many other tasks in recent years for it can well represent the semantics of words.However,the existing word embedding methods mostly represent each word as a single vector,without considering the homonymy and polysemy of the word;thus,their performances are limited.In order to address this problem,an effective topical word embedding(TWE)‐based WSD method,named TWE‐WSD,is proposed,which integrates Latent Dirichlet Allocation(LDA)and word embedding.Instead of generating a single word vector(WV)for each word,TWE‐WSD generates a topical WV for each word under each topic.Effective integrating strategies are designed to obtain high quality contextual vectors.Extensive experiments on SemEval‐2013 and SemEval‐2015 for English all‐words tasks showed that TWE‐WSD outperforms other state‐of‐the‐art WSD methods,especially on nouns.
基金supported by the Undergraduate Education and Teaching Reform Research Project of Yunnan Province(JG2023157)Support Program for Yunnan Talents(CA23138L010A)+2 种基金Yunnan Higher Education Undergraduate Teaching Achievement Project(202246)National First class Undergraduate Course Construction Project of Software Engineering(109620210004)Software Engineering Virtual Teaching and Research Office Construction Project of Kunming University of Science and Technology(109620220031)。
文摘According to the standards of engineering education accreditation,the achievement paths and evaluation criteria of course goals are presented,aimed at the objectives of software engineering courses and the characteristics of hybrid teaching in Kunming University of Science and Technology.Then a multi-dimensional evaluation system for course goal achievement of software engineering is proposed.The practice’s results show that the multi-dimensional course goal achievement evaluation is helpful to the continuous improvement of course teaching,which can effectively support the evaluation of graduation outcomes.
基金This research is sponsored by the National Science Foundation of China No. 60703116, 61063006 and 61462049, and the Application Basic Research Plan in Yunnan Province of China No. 2013FZ020.
文摘With the popularity of mobile intelligent terminal, user comments of App software is viewed as one of the research interests of social computing. Faced with the massive App software, most users usually view the other users’ comments and marks to selecting the desired App software. Due to the freedom and randomness of the network comments, the inconsistence between the user’s comment and mark makes it difficult to choose App software. This paper presents a method by analyzing the relationships among user’s comment information, the user’s mark and App software information. Firstly, the consistency between user’s comment information and App software information is judged. Then, through analyzing the grammar relationships among the feature-words, adverbs and the feature-sentiment-words in App software’s feature-sentimentword- pairs, the user’s emotional tendency about App software is quantified quantified combining with the dictionary and the network sentiment words. After calculating the user’s comprehensive score of App software, the consistency of App software’s user comment is judged by comparing this score and the user’s mark. Finally, the experimental results show that the method is effective.
文摘T-overlap query is the basis of set similarity query and has been applied in many important fields.Most existing approaches employ a pruning-and-verification framework,thus in low efficiency.Modern GPU has much higher parallelism as well as memory bandwidth than CPU and can be used to accelerate T-overlap query.In this paper,we use hash segmentation to divide inverted lists into segments,then design an efficient inverted index called GHSII on GPU using hash segmentation.Based on GHSII,a new segmentation parallel T-overlap algorithm,GSPS,is proposed.GSPS uses segment at a time to scan segments and uses shared memory to decrease the number of accesses to device memory.Furthermore,an optimized algorithm called GSPS-TLLO using a heuristic query order is proposed to solve the problem of load imbalance.Experiments are carried out on two real datasets and the results show that GSPS-TLLO outperforms the state-of-the-art GPU parallel T-overlap algorithms.
文摘In order to judge whether the user reviews are relevant to App software, this paper proposed a method to judge the relevance of user reviews based on Naive Bayesian text classification and term frequency.Firstly, the keywords sets of App software’s user reviews are extracted. Then, the keywords sets are optimized. Finally, the relevance score of the user reviews are calculated, and whether the user reviews are relevant is judged. Through the experiment, this method is proved that can judge the relevance of App software’s user reviews effectively.