BACKGROUND The prognosis for hepatocellular carcinoma(HCC)in the presence of cirrhosis is unfavourable,primarily attributable to the high incidence of recurrence.AIM To develop a machine learning model for predicting ...BACKGROUND The prognosis for hepatocellular carcinoma(HCC)in the presence of cirrhosis is unfavourable,primarily attributable to the high incidence of recurrence.AIM To develop a machine learning model for predicting early recurrence(ER)of posthepatectomy HCC in patients with cirrhosis and to stratify patients’overall survival(OS)based on the predicted risk of recurrence.METHODS In this retrospective study,214 HCC patients with cirrhosis who underwent curative hepatectomy were examined.Radiomics feature selection was conducted using the least absolute shrinkage and selection operator and recursive feature elimination methods.Clinical-radiologic features were selected through univariate and multivariate logistic regression analyses.Five machine learning methods were used for model comparison,aiming to identify the optimal model.The model’s performance was evaluated using the receiver operating characteristic curve[area under the curve(AUC)],calibration,and decision curve analysis.Additionally,the Kaplan-Meier(K-M)curve was used to evaluate the stratification effect of the model on patient OS.RESULTS Within this study,the most effective predictive performance for ER of post-hepatectomy HCC in the background of cirrhosis was demonstrated by a model that integrated radiomics features and clinical-radiologic features.In the training cohort,this model attained an AUC of 0.844,while in the validation cohort,it achieved a value of 0.790.The K-M curves illustrated that the combined model not only facilitated risk stratification but also exhibited significant discriminatory ability concerning patients’OS.CONCLUSION The combined model,integrating both radiomics and clinical-radiologic characteristics,exhibited excellent performance in HCC with cirrhosis.The K-M curves assessing OS revealed statistically significant differences.展开更多
BACKGROUND Microvascular invasion(MVI)is a significant indicator of the aggressive behavior of hepatocellular carcinoma(HCC).Expanding the surgical resection margin and performing anatomical liver resection may improv...BACKGROUND Microvascular invasion(MVI)is a significant indicator of the aggressive behavior of hepatocellular carcinoma(HCC).Expanding the surgical resection margin and performing anatomical liver resection may improve outcomes in patients with MVI.However,no reliable preoperative method currently exists to predict MVI status or to identify patients at high-risk group(M2).AIM To develop and validate models based on contrast-enhanced computed tomo-graphy(CECT)radiomics and clinicoradiological factors to predict MVI and identify M2 among patients with hepatitis B virus-related HCC(HBV-HCC).The ultimate goal of the study was to guide surgical decision-making.METHODS A total of 270 patients who underwent surgical resection were retrospectively analyzed.The cohort was divided into a training dataset(189 patients)and a validation dataset(81)with a 7:3 ratio.Radiomics features were selected using intra-class correlation coefficient analysis,Pearson or Spearman’s correlation analysis,and the least absolute shrinkage and selection operator algorithm,leading to the construction of radscores from CECT images.Univariate and multivariate analyses identified significant clinicoradiological factors and radscores associated with MVI and M2,which were subsequently incorporated into predictive models.The models’performance was evaluated using calibration,discrimination,and clinical utility analysis.RESULTS Independent risk factors for MVI included non-smooth tumor margins,absence of a peritumoral hypointensity ring,and a high radscore based on delayed-phase CECT images.The MVI prediction model incorporating these factors achieved an area under the curve(AUC)of 0.841 in the training dataset and 0.768 in the validation dataset.The M2 prediction model,which integrated the radscore from the 5 mm peritumoral area in the CECT arterial phase,α-fetoprotein level,enhancing capsule,and aspartate aminotransferase level achieved an AUC of 0.865 in the training dataset and 0.798 in the validation dataset.Calibration and decision curve analyses confirmed the models’good fit and clinical utility.CONCLUSION Multivariable models were constructed by combining clinicoradiological risk factors and radscores to preoper-atively predict MVI and identify M2 among patients with HBV-HCC.Further studies are needed to evaluate the practical application of these models in clinical settings.展开更多
基金Supported by Anhui Provincial Key Research and Development Plan,No.202104j07020048.
文摘BACKGROUND The prognosis for hepatocellular carcinoma(HCC)in the presence of cirrhosis is unfavourable,primarily attributable to the high incidence of recurrence.AIM To develop a machine learning model for predicting early recurrence(ER)of posthepatectomy HCC in patients with cirrhosis and to stratify patients’overall survival(OS)based on the predicted risk of recurrence.METHODS In this retrospective study,214 HCC patients with cirrhosis who underwent curative hepatectomy were examined.Radiomics feature selection was conducted using the least absolute shrinkage and selection operator and recursive feature elimination methods.Clinical-radiologic features were selected through univariate and multivariate logistic regression analyses.Five machine learning methods were used for model comparison,aiming to identify the optimal model.The model’s performance was evaluated using the receiver operating characteristic curve[area under the curve(AUC)],calibration,and decision curve analysis.Additionally,the Kaplan-Meier(K-M)curve was used to evaluate the stratification effect of the model on patient OS.RESULTS Within this study,the most effective predictive performance for ER of post-hepatectomy HCC in the background of cirrhosis was demonstrated by a model that integrated radiomics features and clinical-radiologic features.In the training cohort,this model attained an AUC of 0.844,while in the validation cohort,it achieved a value of 0.790.The K-M curves illustrated that the combined model not only facilitated risk stratification but also exhibited significant discriminatory ability concerning patients’OS.CONCLUSION The combined model,integrating both radiomics and clinical-radiologic characteristics,exhibited excellent performance in HCC with cirrhosis.The K-M curves assessing OS revealed statistically significant differences.
基金Supported by Anhui Provincial Key Research and Development Plan,No.202104j07020048.
文摘BACKGROUND Microvascular invasion(MVI)is a significant indicator of the aggressive behavior of hepatocellular carcinoma(HCC).Expanding the surgical resection margin and performing anatomical liver resection may improve outcomes in patients with MVI.However,no reliable preoperative method currently exists to predict MVI status or to identify patients at high-risk group(M2).AIM To develop and validate models based on contrast-enhanced computed tomo-graphy(CECT)radiomics and clinicoradiological factors to predict MVI and identify M2 among patients with hepatitis B virus-related HCC(HBV-HCC).The ultimate goal of the study was to guide surgical decision-making.METHODS A total of 270 patients who underwent surgical resection were retrospectively analyzed.The cohort was divided into a training dataset(189 patients)and a validation dataset(81)with a 7:3 ratio.Radiomics features were selected using intra-class correlation coefficient analysis,Pearson or Spearman’s correlation analysis,and the least absolute shrinkage and selection operator algorithm,leading to the construction of radscores from CECT images.Univariate and multivariate analyses identified significant clinicoradiological factors and radscores associated with MVI and M2,which were subsequently incorporated into predictive models.The models’performance was evaluated using calibration,discrimination,and clinical utility analysis.RESULTS Independent risk factors for MVI included non-smooth tumor margins,absence of a peritumoral hypointensity ring,and a high radscore based on delayed-phase CECT images.The MVI prediction model incorporating these factors achieved an area under the curve(AUC)of 0.841 in the training dataset and 0.768 in the validation dataset.The M2 prediction model,which integrated the radscore from the 5 mm peritumoral area in the CECT arterial phase,α-fetoprotein level,enhancing capsule,and aspartate aminotransferase level achieved an AUC of 0.865 in the training dataset and 0.798 in the validation dataset.Calibration and decision curve analyses confirmed the models’good fit and clinical utility.CONCLUSION Multivariable models were constructed by combining clinicoradiological risk factors and radscores to preoper-atively predict MVI and identify M2 among patients with HBV-HCC.Further studies are needed to evaluate the practical application of these models in clinical settings.