Short-lived medical isotopes and their generators are typically produced in nuclear reactors and cyclotrons that require extensive facilities.However,considering the environmental concerns and economic costs of these ...Short-lived medical isotopes and their generators are typically produced in nuclear reactors and cyclotrons that require extensive facilities.However,considering the environmental concerns and economic costs of these traditional approaches,modern laser technology,which provides extremely strong electric fields within tabletop-sized areas,can serve as a potential supplementary method.Focusing specifically on the(γ,p)generation of the vital medical isotopes^(47)Sc and^(67)Cu,we used both experimental results and PIC-GEANT4 simulations to demonstrate that laser-induced photonuclear reaction is a promising method for isotope production.We developed a model capable of calculating isotope yields under various laser conditions and acceleration mechanisms.The findings revealed that a 200 TW laser can sufficiently produce diagnostic amounts of^(47)Sc and^(67)Cu,while simultaneously providing high specific activity,which is significant in medical applications for improving treatment efficacy,enhancing image resolution,and reducing side effects.展开更多
In this study,we theoretically investigate the feasibility of using laser-wakefield accelerated(LWFA)electrons for the photonuclear measurement of nuclear isomers according to the characteristics of the electrons obta...In this study,we theoretically investigate the feasibility of using laser-wakefield accelerated(LWFA)electrons for the photonuclear measurement of nuclear isomers according to the characteristics of the electrons obtained from LWFA experiments conducted at the Compact Laser-Plasma Accelerator(CLAPA)laboratory.The experiments at the CLAPA show that a stable electron beam with an energy of 78-135 MeV and a charge of 300-600 pC can be obtained.The bremsstrahlung spectra were simulated using Geant4,which suggests that a bremsstrahlung source with a peak intensity of 10^(19) photons/s can be generated.Theoretical calculations of isomer production cross sections from the photonuclear reactions on six target nuclei,^(197)Au,^(180)Hf,^(159)Tb,^(115)In,^(103)Rh,and ^(90)Zr,were performed and compared with the available experimental data in EXFOR,which suggest that further experiments are required for a series of photonuclear reaction channels.Flux-averaged cross sections and isomer ratios(IR)resulting from such bremsstrahlung sources are theoretically deduced.The results suggest that IR measurements can be used to constrain nuclear components,such asγstrength function and optical model potential.In addition,the detection of the decay characteristics was evaluated with Geant4 simulations.The use of the LWFA electron beam and its bremsstrahlung for photonuclear studies involving nuclear isomers is anticipated.展开更多
文摘Short-lived medical isotopes and their generators are typically produced in nuclear reactors and cyclotrons that require extensive facilities.However,considering the environmental concerns and economic costs of these traditional approaches,modern laser technology,which provides extremely strong electric fields within tabletop-sized areas,can serve as a potential supplementary method.Focusing specifically on the(γ,p)generation of the vital medical isotopes^(47)Sc and^(67)Cu,we used both experimental results and PIC-GEANT4 simulations to demonstrate that laser-induced photonuclear reaction is a promising method for isotope production.We developed a model capable of calculating isotope yields under various laser conditions and acceleration mechanisms.The findings revealed that a 200 TW laser can sufficiently produce diagnostic amounts of^(47)Sc and^(67)Cu,while simultaneously providing high specific activity,which is significant in medical applications for improving treatment efficacy,enhancing image resolution,and reducing side effects.
基金supported by the National Natural Science Foundation of China (Nos.11921006,U2230133)Beijing Outstanding Young Scientists Program+2 种基金National Grand Instrument Project (No.2019YFF01014400)National Key R&D Program of China (No.2022YFA1603303)Open Foundation of Key Laboratory of High Power Laser and Physics,Chinese Academy of Sciences (No.SGKF202104)。
文摘In this study,we theoretically investigate the feasibility of using laser-wakefield accelerated(LWFA)electrons for the photonuclear measurement of nuclear isomers according to the characteristics of the electrons obtained from LWFA experiments conducted at the Compact Laser-Plasma Accelerator(CLAPA)laboratory.The experiments at the CLAPA show that a stable electron beam with an energy of 78-135 MeV and a charge of 300-600 pC can be obtained.The bremsstrahlung spectra were simulated using Geant4,which suggests that a bremsstrahlung source with a peak intensity of 10^(19) photons/s can be generated.Theoretical calculations of isomer production cross sections from the photonuclear reactions on six target nuclei,^(197)Au,^(180)Hf,^(159)Tb,^(115)In,^(103)Rh,and ^(90)Zr,were performed and compared with the available experimental data in EXFOR,which suggest that further experiments are required for a series of photonuclear reaction channels.Flux-averaged cross sections and isomer ratios(IR)resulting from such bremsstrahlung sources are theoretically deduced.The results suggest that IR measurements can be used to constrain nuclear components,such asγstrength function and optical model potential.In addition,the detection of the decay characteristics was evaluated with Geant4 simulations.The use of the LWFA electron beam and its bremsstrahlung for photonuclear studies involving nuclear isomers is anticipated.