Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes...Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes is promising to achieve higher energy density.However,the incompatible interfaces between sulfide SEs and high-voltage cathodes have been one of the key factors limiting their applications.Therefore,this review presents a critical summarization of the interfacial issues in all-solid-state lithium batteries based on sulfide SEs and high-voltage cathodes and proposes strategies to stabilize the electrolyte/cathode interfaces.Moreover,the future research direction of electrolyte/cathode interfaces and application prospects of powder technology in sulfide-based ASSLBs were also discussed.展开更多
基金supported by the Beijing Natural Science Foundation(grant No.L223009)the National Natural Science Foundation of China(grant No.22075029)+1 种基金the National Key Research and Development Program of China(grant No.2021YFB2500300)the Key Research and Development(R&D)Projects of Shanxi Province(grant No.2021020660301013).
文摘Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes is promising to achieve higher energy density.However,the incompatible interfaces between sulfide SEs and high-voltage cathodes have been one of the key factors limiting their applications.Therefore,this review presents a critical summarization of the interfacial issues in all-solid-state lithium batteries based on sulfide SEs and high-voltage cathodes and proposes strategies to stabilize the electrolyte/cathode interfaces.Moreover,the future research direction of electrolyte/cathode interfaces and application prospects of powder technology in sulfide-based ASSLBs were also discussed.