期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Application study on plasma ignition in aeroengine strut–cavity–injector integrated afterburner
1
作者 Li Fei Bingbing Zhao +5 位作者 Xiong Liu Liming He Jun Deng jianping lei Ziehen Zhao Zhiyu Zhao 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第10期186-196,共11页
To increase the thrust-weight ratio in next-generation military aeroengines,a new integrated afterburner was designed in this study.The integrated structure of a combined strut–cavity–injector was applied to the aft... To increase the thrust-weight ratio in next-generation military aeroengines,a new integrated afterburner was designed in this study.The integrated structure of a combined strut–cavity–injector was applied to the afterburner.To improve ignition characteristics in the afterburner,a new method using a plasma jet igniter was developed and optimized for application in the integrated afterburner.The effects of traditional spark igniters and plasma jet igniters on ignition processes and ignition characteristics of afterburners were studied and compared with the proposed design.The experimental results show that the strut–cavity–injector combination can achieve stable combustion,and plasma ignition can improve ignition characteristics.Compared with conventional spark ignition,plasma ignition reduced the ignition delay time by 67 ms.Additionally,the ignition delay time was reduced by increasing the inlet velocity and reducing the excess air coefficient.This investigation provides an effective and feasible method to apply plasma ignition in aeroengine afterburners and has potential engineering applications. 展开更多
关键词 integrated afterburner AEROENGINE plasma ignition ignition process ignition characteristics
下载PDF
Experimental study of rotating gliding arc discharge plasma-assisted combustion in an aero-engine combustion chamber 被引量:10
2
作者 Liming HE Yi CHEN +3 位作者 Jun DENG jianping lei Li FEI Pengfei LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期337-346,共10页
The combustion chamber is the core component of an aero-engine, and affects its reliability and security operation, even the performance of the aircraft. In this work, a Plasma-Assisted Combustion(PAC) test platform w... The combustion chamber is the core component of an aero-engine, and affects its reliability and security operation, even the performance of the aircraft. In this work, a Plasma-Assisted Combustion(PAC) test platform was developed to validate the feasibility of using PAC actuators to enhance annular combustor performance. Two plans of PAC(rotating gliding arc discharge plasma) were designed, Assisted Combustion from Primary Holes(ACPH) and Assisted Combustion from Dilution Holes(ACDH). Comparative experiments and analysis between conventional combustion and PAC were conducted to study the effects of ACPH and ACDH on the performances including average outlet temperature, combustion efficiency, pattern factor under four different excessive air coefficients(0.8, 1, 2, and 4), and lean blowout performance at different inlet airflow velocities. Experimental results show that the combustion efficiency is improved after PAC compared with that in normal conditions, and the combustion efficiency of ACPH increases2.45%, 1.49%, 1.04%, and 0.47%, while it increases 2.75%, 1.67%, 1.36%, and 0.36% under ACDH conditions. The uniformity of the outlet temperature field and the lean blowout performance are improved after PAC. Especially for ACPH, the widening of the lean blowout limit is8.3%, 12.4%, 12.8%, and 25% respectively when the inlet velocity ranges from 60 m/s to120 m/s. These results offer new perspectives for using PAC devices to enhance aero-engine combustors' performances. 展开更多
关键词 AERO-ENGINE Assisted COMBUSTION actuator COMBUSTION CHAMBERS Plasma-Assisted COMBUSTION ROTATING GLIDING arc discharge
原文传递
DENTING AND FAILURE OF LIQUID-FILLED TUBES UNDER LATERAL IMPACT 被引量:3
3
作者 Guoyun Lu jianping lei +2 位作者 Zhijun Han Zhifang Liu Shanyuan Zhang 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第6期609-615,共7页
In this paper, numerical simulation of impact cases of liquid-filled tube impacted by missiles is conducted with a commercial finite element code LS-DYNA, and the results obtained are compared with the experimental da... In this paper, numerical simulation of impact cases of liquid-filled tube impacted by missiles is conducted with a commercial finite element code LS-DYNA, and the results obtained are compared with the experimental data to verify the validity of the numerical simulation model adopted. With the verified numerical method, the processes of dynamic response of a blunt indenter impacting an empty or liquid-filled three-span continuous tubular beam are studied when the parameter such ms the indenter's mass, liquid's density or impact velocity is varied and the other conditions are kept the same. The simulation results indicate that the criticM perforation energy and the deformation of the wall of the pipe are significantly influenced by the presence of the liquid and the pressure. The liquid filling the tube provides a 'foundation' pressure to resist and localize the deformation, which may affect the perforation process and lead to a reduction of the ballistic limit. The simulation results also indicate that the increase of the fluid density filled in the tube will decrease the ballistic limit, but the fluid density must be in some scope. The relationship between the ballistic limit velocity of the tube and the mass of the impact missile is nonlinear in the Cartesian coordinate while it becomes linear through logarithmic transformation. 展开更多
关键词 impact PERFORATION fluid-structure interaction TUBE
原文传递
Biosensing strategy based on photocurrent quenching of quantum dots via energy resonance absorption 被引量:1
4
作者 Guangming Wen Peng Wang +2 位作者 Wenwen Tu jianping lei Huangxian Ju 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第5期879-884,共6页
A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorpti... A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorption band overlapped with that of the QDs, which led to the resonance absorption of the excitation energy and thus decreased the photocurrent of QDs. By using porphyrin and fluorscein isothiocyanate isomer I as the resonance absorption dyes, the proposed mechanism was proved by UV-Vis spectra, photoluminescence spectra and photocurrent-to-wavelength response, respectively. The interaction of the absorption-matched dye with biomolecule could be conveniently used to introduce it into the photocurrent quenching system, leading to a simple switch-off biosensing method for detection of the biomolecule. As example, a label-free method was proposed for photoelectrochemical detection of target DNA. This method showed a detection range from 6.0 to 600 nmol/L with a detection limit of 2.5 nmol/L. The result demonstrated that the photocurrent quenching via energy resonance absorption not only contributed to the theoretical study of photoelectrochemistry, but also provided a universal tool for photoelectrochemical biosensing. 展开更多
关键词 energy resonance absorption photocurrent quenching photoelelctrochemistry BIOSENSING DNA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部