Aims Theories based on resource additions indicate that plant species richness is mainly determined by the number of limiting resources.However,the individual effects of various limiting resources on species richness ...Aims Theories based on resource additions indicate that plant species richness is mainly determined by the number of limiting resources.However,the individual effects of various limiting resources on species richness and aboveground net primary productivity(ANPP)are less well understood.Here,we analyzed potential linkages between additions of limiting resources,species loss and ANPP increase and further explored the underlying mechanisms.Methods Resources(N,P,K and water)were added in a completely randomized block design to alpine meadow plots in the Qinghai-Tibetan Plateau.Plant aboveground biomass,species composition,mean plant height and light availability were measured in each plot.Regression and analysis of variance were used to analyze the responses of these measures to the different resource-addition treatments.Important Findings Species richness decreased with increasing number of added limiting resources,suggesting that plant diversity was apparently determined by the number of limiting resources.Nitrogen was the most important limiting resource affecting species richness,whereas Pand K alone had negligible effects.The largest reduction in species richness occurred when all three elements were added in combination.Water played a different role compared with the other limiting resources.Species richness increased when water was added to the treatments with N and P or with N,P and K.The decreases in species richness after resource additions were paralleled by increases in ANPP and decreases in light penetration into the plant canopy,suggesting that increased light competitionwas responsible for the negative effects of resource additions on plant species richness.展开更多
Conjugated polymers have been explored as promising hole-transporting layer(HTL)in lead sulfide(PbS)quantum dot(QD)solar cells.The fine regulation of the inorganic/organic interface is pivotal to realize high device p...Conjugated polymers have been explored as promising hole-transporting layer(HTL)in lead sulfide(PbS)quantum dot(QD)solar cells.The fine regulation of the inorganic/organic interface is pivotal to realize high device performance.In this work,we propose using CsPbI_(3) QDs as the interfacial layer between PbS QD active layer and organic polymer HTL.The relative soft perovskite can mediate the interface and form favorable energy level alignment,improving charge extraction and reducing interfacial charge recombination.As a result,the photovoltaic performance can be efficiently improved from 10.50%to 12.32%.This work may provide new guidelines to the device structural design of QD optoelectronics by integrating different solutionprocessed semiconductors.展开更多
基金National Natural Science Foundation of China(30970465)Research Station of Alpine Meadow and Wetland Ecosystems of Lanzhou University.
文摘Aims Theories based on resource additions indicate that plant species richness is mainly determined by the number of limiting resources.However,the individual effects of various limiting resources on species richness and aboveground net primary productivity(ANPP)are less well understood.Here,we analyzed potential linkages between additions of limiting resources,species loss and ANPP increase and further explored the underlying mechanisms.Methods Resources(N,P,K and water)were added in a completely randomized block design to alpine meadow plots in the Qinghai-Tibetan Plateau.Plant aboveground biomass,species composition,mean plant height and light availability were measured in each plot.Regression and analysis of variance were used to analyze the responses of these measures to the different resource-addition treatments.Important Findings Species richness decreased with increasing number of added limiting resources,suggesting that plant diversity was apparently determined by the number of limiting resources.Nitrogen was the most important limiting resource affecting species richness,whereas Pand K alone had negligible effects.The largest reduction in species richness occurred when all three elements were added in combination.Water played a different role compared with the other limiting resources.Species richness increased when water was added to the treatments with N and P or with N,P and K.The decreases in species richness after resource additions were paralleled by increases in ANPP and decreases in light penetration into the plant canopy,suggesting that increased light competitionwas responsible for the negative effects of resource additions on plant species richness.
基金supported by the National Natural Science Foundation of China(Nos.92163114,22161142003,52002260,62022081,and 61974099)the Natural Science Foundation of Jiangsu Province of China(No.BK20200872)+3 种基金the State Key Laboratory of applied optics(No.SKLAO2020001A03)Postdoctoral Science Foundation of China(No.2021M702415)This work is also supported by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.K.W.acknowledges the funding support from National Key Research and Development Program(No.2017YFE0120400)National Natural Science Foundation of China(No.61875082).
文摘Conjugated polymers have been explored as promising hole-transporting layer(HTL)in lead sulfide(PbS)quantum dot(QD)solar cells.The fine regulation of the inorganic/organic interface is pivotal to realize high device performance.In this work,we propose using CsPbI_(3) QDs as the interfacial layer between PbS QD active layer and organic polymer HTL.The relative soft perovskite can mediate the interface and form favorable energy level alignment,improving charge extraction and reducing interfacial charge recombination.As a result,the photovoltaic performance can be efficiently improved from 10.50%to 12.32%.This work may provide new guidelines to the device structural design of QD optoelectronics by integrating different solutionprocessed semiconductors.