With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Techn...With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.展开更多
Microtubes/rods of the layered metal hydroxide salt compound Cd2(OH)3(DS)·nH2O, where DS stands for dodecyl sulfate sandwiched between two adjacent inorganic sheets, have been synthesized for the first time t...Microtubes/rods of the layered metal hydroxide salt compound Cd2(OH)3(DS)·nH2O, where DS stands for dodecyl sulfate sandwiched between two adjacent inorganic sheets, have been synthesized for the first time through a mild hydrothermal reaction route. The microtubes/rods have a diameter of about 1 μm and a length ranging from several microns to 20μm. The growth process of microtubes/rods under the experimental conditions employed follows a dissolution-recrystallization route.展开更多
Visible and even infrared(IR)light-initiated hot electrons of graphene(Gr)catalysts are a promising driven power for green,safe,and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-do...Visible and even infrared(IR)light-initiated hot electrons of graphene(Gr)catalysts are a promising driven power for green,safe,and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-dominated narrow light absorption to visible light confronted by conventional photocatalyst.However,the life time of photogenerated hot electrons is too short to be efficiently used for various photocatalytic reactions.Here,we proposed a straightforward method to prolong the lifetime of photogenerated hot electrons from graphene by tuning the Schottky barrier at Gr/rutile interface to facilitate the hot electron injection.The rational design of Gr-coated TiO2 heterojunctions with interface synergy-induced decrease in the formation energy of the rutile phase makes the phase transfer of TiO2 support proceed smoothly and rapidly via ball milling.The optimized Gr/rutile dyad could provide a H2O2 yield of 1.05 mM·g-1·h-1 under visible light irradiation(λ≥400 nm),which is 30 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst,and even achieves a H2O2 yield of 0.39 mM·g-1·h-1 on photoexcitation by near-infrared-region light(~800 nm).展开更多
文摘With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.
基金the National Natural Science Foun-dation of China for financial support
文摘Microtubes/rods of the layered metal hydroxide salt compound Cd2(OH)3(DS)·nH2O, where DS stands for dodecyl sulfate sandwiched between two adjacent inorganic sheets, have been synthesized for the first time through a mild hydrothermal reaction route. The microtubes/rods have a diameter of about 1 μm and a length ranging from several microns to 20μm. The growth process of microtubes/rods under the experimental conditions employed follows a dissolution-recrystallization route.
基金supported by the National Natural Science Foundation of China(Nos.21737002,21931005,21720102002,and 22071146)Shanghai Science and Technology Committee(Nos.19JC1412600 and 20520711600)the SJTU-MPI partner group.
文摘Visible and even infrared(IR)light-initiated hot electrons of graphene(Gr)catalysts are a promising driven power for green,safe,and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-dominated narrow light absorption to visible light confronted by conventional photocatalyst.However,the life time of photogenerated hot electrons is too short to be efficiently used for various photocatalytic reactions.Here,we proposed a straightforward method to prolong the lifetime of photogenerated hot electrons from graphene by tuning the Schottky barrier at Gr/rutile interface to facilitate the hot electron injection.The rational design of Gr-coated TiO2 heterojunctions with interface synergy-induced decrease in the formation energy of the rutile phase makes the phase transfer of TiO2 support proceed smoothly and rapidly via ball milling.The optimized Gr/rutile dyad could provide a H2O2 yield of 1.05 mM·g-1·h-1 under visible light irradiation(λ≥400 nm),which is 30 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst,and even achieves a H2O2 yield of 0.39 mM·g-1·h-1 on photoexcitation by near-infrared-region light(~800 nm).