Stable and portable ammonia(NH3)is a promising,low-cost,and environment-friendly medium for energy storage.How to achieve the rapid production of NH3 from reducing NO_(x)^(−)in aqueous systems and industrial wastewate...Stable and portable ammonia(NH3)is a promising,low-cost,and environment-friendly medium for energy storage.How to achieve the rapid production of NH3 from reducing NO_(x)^(−)in aqueous systems and industrial wastewater via electrochemical methods remains the main challenge for practical application on a large scale.The corresponding electrocatalysts as the key materials in electrochemical devices suffer from low activity,especially in neutral systems.In this work,we successfully elevated the activity of the bench-mark Ru electrocatalysts to more than 30 times via construction of rectifying contact of Ru metals and noble carbons.We theoretically predicted and then rationally designed a new type of P-O rich carbon with large work functions as“noble”supports to attract a pronounced number of electrons from Ru metals at the rectifying interface.The resulting electron deficiency of Ru metals largely promotes the pre-adsorption and activation of NO_(x)^(−)anions,providing high Faradaic efficiencies(>96%)and record-high turnover frequency values for universal NO_(2)^(−)and NO_(3)^(−)reduction in neutral solution.展开更多
基金This work was supported by the National Natural Science Foundation of China(grant nos.21931005,21720102002,and 22071146)Shanghai Science and Technology Committee(grant nos.19JC1412600 and 20520711600),and the SJTU-MPI partner group.
文摘Stable and portable ammonia(NH3)is a promising,low-cost,and environment-friendly medium for energy storage.How to achieve the rapid production of NH3 from reducing NO_(x)^(−)in aqueous systems and industrial wastewater via electrochemical methods remains the main challenge for practical application on a large scale.The corresponding electrocatalysts as the key materials in electrochemical devices suffer from low activity,especially in neutral systems.In this work,we successfully elevated the activity of the bench-mark Ru electrocatalysts to more than 30 times via construction of rectifying contact of Ru metals and noble carbons.We theoretically predicted and then rationally designed a new type of P-O rich carbon with large work functions as“noble”supports to attract a pronounced number of electrons from Ru metals at the rectifying interface.The resulting electron deficiency of Ru metals largely promotes the pre-adsorption and activation of NO_(x)^(−)anions,providing high Faradaic efficiencies(>96%)and record-high turnover frequency values for universal NO_(2)^(−)and NO_(3)^(−)reduction in neutral solution.