Hepatic recompensation is firstly described in the Baveno VII criteria,which requires the fulfillment of strict criteria.First,a primary cause of cirrhosis must be addressed,suppressed,or cured.Second,complications of...Hepatic recompensation is firstly described in the Baveno VII criteria,which requires the fulfillment of strict criteria.First,a primary cause of cirrhosis must be addressed,suppressed,or cured.Second,complications of liver cirrhosis,inclu-ding ascites,encephalopathy,and variceal hemorrhage,must disappear without any intervention.Finally,liver function indicators must be improved.Moreover,without addressing/suppressing/curing cirrhosis and improvement in liver syn-thetic function,complications,including ascites and variceal hemorrhage can be improved by a transjugular intrahepatic portosystemic shunt(TIPS),which is not evidence of hepatic recompensation.Therefore,on the basis of the definition of hepatic recompensation,TIPS does not achieve hepatic recompensation.展开更多
Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and t...Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and the mechanical properties were investigated. The results showed that Li is an effective element to refine the grains and break the eutectic networks in as-cast MgGd_3Zn_1 alloy. During solid solution treatment, these broken eutectic networks are spheroidized and highly dispersed. In addition, plentiful lamellar long period stacking ordered(LPSO) phases are precipitated in an α-Mg matrix when the Li addition is not more than 4%. Solid-solution treated Mg_(92)Gd_3Zn_1Li_4 alloy exhibits an optimal ultimate tensile strength(UTS) of 226 MPa and elongation of 5.8%. The strength of MgGd_3Zn_1 alloy is improved significantly, meanwhile, the toughness is apparently increased.展开更多
A type of biomedical magnesium alloy Mg-3Zn-1Y-0.6Zr-0.5Ca was cast and extruded at three extrusion temperatures of 270, 300 and 330 °C. The microstructure and mechanical properties of the cast and extruded alloy...A type of biomedical magnesium alloy Mg-3Zn-1Y-0.6Zr-0.5Ca was cast and extruded at three extrusion temperatures of 270, 300 and 330 °C. The microstructure and mechanical properties of the cast and extruded alloys, tailored at different extrusion parameters, were investigated using tensile tests, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, transmission electron microscopy and electron backscattered diffraction. Optimum comprehensive mechanical properties are achieved in the alloy extruded at 270 °C, the ultimate tensile strength and the elongation reach 315 MPa and 26%, respectively, which is deemed to be associated with the grain refinement, weak basal texture and second phases strengthening. After hot extrusion, extensive dynamic recrystallization is found in the Mg-3Zn-1Y-0.6Zr-0.5Ca alloy. Continuous Mg3YZn6 phase bands are gradually broken into discontinuous chain-like or dot-like structures, and the grains distribute more uniformly. The as-extruded Mg-3Zn-1Y-0.6Zr-0.5Ca alloy exhibits a weak texture with (0001) basal planes parallel to the extrusion direction.展开更多
Objective To evaluate the feasibility of whole body diffusion weighted imaging (DWI) in bone metastasis detection using bone scintigraphy as comparison. Methods Forty-five patients with malignancy history were enrolle...Objective To evaluate the feasibility of whole body diffusion weighted imaging (DWI) in bone metastasis detection using bone scintigraphy as comparison. Methods Forty-five patients with malignancy history were enrolled in our study. All the patients received the whole body DWI and bone scintigraphy scan within 1 week. The magnetic resonance (MR) examination was performed on 3.0T MR scanner using embedded body coil. The images were reviewed separately by two radiologists and two nuclear medicine physicians, who were blinded to the results of the other imaging modality. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the two techniques for detecting bone metastasis were analyzed. Results A total of 181 metastatic lesions in 77 regions of 34 patients were detected by whole body DWI, and 167 metastatic lesions in 76 regions of 31 patients were identified by bone scintigraphy. The patient-based sensitivity and PPV of whole body DWI and bone scintigraphy were similar (89.5% vs. 81.6%, 97.1% vs. 91.2%), whereas, the patient-based specificity and NPV of whole body DWI were obviously higher than those of bone scintigraphy (85.7% vs. 57.1%, 60.0% vs. 36.4%). Ten regions negative in scintigraphy but positive in whole body DWI, mainly located in spine, pelvis, and femur; nine regions only detected by scintigraphy, mainly located in skull, sternum, clavicle, and scapula. The region-based sensitivity and specificity of whole body DWI were slightly higher than those of bone scintigraphy (89.5% vs. 88.4%, 95.6% vs. 87.6%). Conclusion Whole body DWI reveals excellent concordance with bone scintigraphy regarding detection of bone metastasis, and the two techniques are complementary for each other.展开更多
To realize the comprehensive utilization of coal-fired industrial solid wastes, a novel high-strength board was prepared from calcium silicate slag, fly ash, and flue gas desulfurization(FGD) gypsum. The changes in mi...To realize the comprehensive utilization of coal-fired industrial solid wastes, a novel high-strength board was prepared from calcium silicate slag, fly ash, and flue gas desulfurization(FGD) gypsum. The changes in mineral phases, chemical structure, and morphology during hydration were investigated by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and scanning electron microscopy(SEM). A traditional board made from quartz and lime was prepared as a reference. The novel board not only consumes a lot of solid wastes, but also meets the strength requirement of the class-five calcium silicate board according to the Chinese Standard JC/T 564.2—2008. Microanalysis showed that hydrated calcium silicate gel(C-S-H(I)), ettringite, tobermorite, and xonotlite were successively generated in the novel board by synergistic hydration of the mixed solid wastes. The board strength was improved by the formation of tobermorite and xonotlite but decreased by unhydrated quartz. It was demonstrated that quartz was not completely hydrated in the traditional board. As a result, the flexural strength of the traditional board was much lower than that of the novel board.展开更多
AIM: To determine the role of acupuncture therapy in treating experimental gastric ulcer in rats.METHODS: Twenty-eight adult male Sprague-Dawley rats were randomly divided into four groups (pre-acupuncture group; acup...AIM: To determine the role of acupuncture therapy in treating experimental gastric ulcer in rats.METHODS: Twenty-eight adult male Sprague-Dawley rats were randomly divided into four groups (pre-acupuncture group; acupuncture group; paradistance-acupuncture group;and control group), and pre-acupuncture, paradistanceacupuncture, and control groups received 5 μL acetic acid (200 mL/L HAc) injection after a same course of electroacupuncture (EA) treatment (4 Hz, 0.6 mA, 0.45 ms,45 min for 4 d). The rats in these three groups recovered within 4 d. The acupuncture group received EA therapy for 4 d, after HAc injection. The stomach was dissected to compare the pathological structures of ulcer. Also c-Fos activation in the nuclei of solitary tract (NTS) was observed under microscope after regular immunohistochemistry staining of brain stem sections.RESULTS: The number of ulcers was different among the four groups, especially between control group and paradistance-acupuncture group or pre-acupuncture group. In the latter group, the number of ulcers was much less. The gastric ulcer area was consistent with the histopathological results, indicating that pre-acupuncture had an obvious therapeutic effect on gastric ulcers.Acupuncture had a very modest effect and paradistanceacupuncture had no effect on gastric ulcers. No therapeutic effect was found in the control group. Fos-Li neurons in NTS induced by noxious gastric ulcer showed a significant difference between pre-acupuncture and control groups.CONCLUSION: Acupuncture before ulceration can obviously alleviate ulcer. The production of c-Fos proves that the vagus nerve mediates the induction of c-Fos in nuclei of solitary tract following experimental ulceration,suggesting that parasympathetic afferents promote the process of noxious visceral stimulation.展开更多
AZ91 D and 8.5 vol.%SiC_(p)/AZ91 D magnesium matrix composites were fabricated by a semi-solid extruded processing method,and treated with solution and aging heat treatment.The effects of SiC_(p)on the microstructures...AZ91 D and 8.5 vol.%SiC_(p)/AZ91 D magnesium matrix composites were fabricated by a semi-solid extruded processing method,and treated with solution and aging heat treatment.The effects of SiC_(p)on the microstructures of the semi-solid extruded AZ91 D magnesium alloy during recrystallization were studied by observing and analyzing the microstructure evolution during extrusions and heat treatments.The results show that the addition of SiC_(p)inhibits the dynamic recrystallization of AZ91 D during the semi-solid extrusion with only 26% of the volume fraction of recrystallization.Furthermore,the addition of SiC_(p)refines the sizes of grains and second phases,and upgrades the volume fraction of second phase.After solution and aging treatment,the recrystallization continues,and the addition of SiC_(p)promotes the recrystallization and the recrystallized microstructure is much more stable.Meanwhile,the sizes of grains and second phases continue to be refined,and the volume fraction of second phases continues to increase.展开更多
Aluminum matrix composites reinforced with mechanical alloying particles(SiC_p) were fabricated by the semisolid stirring pouring method. The inf luence of mechanical alloying particles and Mg on the microstructure an...Aluminum matrix composites reinforced with mechanical alloying particles(SiC_p) were fabricated by the semisolid stirring pouring method. The inf luence of mechanical alloying particles and Mg on the microstructure and mechanical properties of the composites was investigated by means of optical microscopy(OM), X-ray diffraction scanning(XRD), electron microscopy(SEM) and energy dispersive spectroscopy(EDS). Results show that the addition of Mg converts the agglomerate mechanical al oying particles in ZL101 matrix composites into dispersed distribution in ZL101-Mg matrix composites, large matrix grains into f ine equiaxed matrix grains, and eutectic phase into f ine particles. So the mechanical properties of ZL101-Mg matrix composites are better than those of ZL101 matrix composites. The mechanical properties of ZL101/ZL101-Mg matrix composites are gradually increased with the increase of the volume fraction of mechanical alloying particles. When the volume fraction of mechanical alloying particles is 3%, the Vickers hardness and ultimate tensile strength of the ZL101/ZL101-Mg matrix composites reach their maximum values.展开更多
We report protonation in several compounds by an ionic-liquid-gating method, under optimized gating conditions.This leads to single superconducting phases for several compounds. Non-volatility of protons allows post-g...We report protonation in several compounds by an ionic-liquid-gating method, under optimized gating conditions.This leads to single superconducting phases for several compounds. Non-volatility of protons allows post-gating magnetization and transport measurements. The superconducting transition temperature Tc is enhanced to 43.5 K for FeSe0.93S0.07, and 41 K for Fe Se after protonation. Superconducting transitions with Tc^15 K for ZrNCl,~7.2 K for 1-TaS2, and ~3.8 K for Bi2Se3 are induced after protonation. Electric transport in protonated FeSe0.93S0.07 confirms high-temperature superconductivity. Our ^1H nuclear magnetic resonance(NMR)measurements on protonated Fe Se1-xSx reveal enhanced spin-lattice relaxation rate 1/^1T1 with increasing x,which is consistent with the LDA calculations that H+ is located in the interstitial sites close to the anions.展开更多
The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic str...The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic structure phase (W phase), and the Mg95Y2.5Zn2.5 alloy has the best comprehensive mechanical properties. Subsequently, the microstructure evolution of the optimized alloy Mg95Y2.5Zn2.5 during solidification and heat treatment processes was analyzed and discussed by means of OM, SEM, TEM, XRD and DTA. After heat treatment, the lamellar phase 14H-LPSO precipitated in a-Mg and W phase transforms into particle phase (MgyZn2). Due to the compound reinforcement effect of the particle phase and LPSO phase (18R+14H), the mechanical properties of the alloy are enhanced. The tensile strength and elongation of the Mg95Y2.5Zn2.5 alloy is improved by 9.1% and 31.3% to 215 MPa and 10.5%, respectively, after solid-solution treatment.展开更多
The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that t...The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that the twinning-slip transition temperature was strain rate dependent, and all the true stress-true strain curves could be divided into two groups: concave and convex curves. Associated microstructural investigations indicated that the dynamic recrystallization (DRX) be- havior of the alloy varied with deformation conditions. At high strain rate and low temperature, dynamically recrystallized grains preferentially nucleated and developed in the twinned regions, indicating that twinning-induced DRX was dominant. While, at low strain rate, DRX developed extensively at grain boundaries and twins, and the process of twinning contributed to both oriented nucleation and selective growth. For the studied alloy, cracks mainly initiated from the shear band and twinning lamellar over the ranges of temperature and strain rate currently applied.展开更多
The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-...The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-solution (T4) and aging-treated (T6) alloys in 1% NaC1 solution are studied. The hydrogen evolution and electrochemical measurements display that the as-cast Mg95.sGd3Zn1Zro.2 alloy with the continuous network eutectic phase exhibits the greatest corrosion resistance, while T6 sample with some needle-like phases and the particle phases is the worst among the three alloys. It is proposed to be mainly related to the amount, composition, microstructure and distribution of the precipitated phases.展开更多
The spheroidizing mechanism of W-phase in the Mg–Zn–Y–Mn–(B) alloys during solid-solution treatment was investigated by using kinetic methodologies. The microstructure and mechanical properties of heat-treated ...The spheroidizing mechanism of W-phase in the Mg–Zn–Y–Mn–(B) alloys during solid-solution treatment was investigated by using kinetic methodologies. The microstructure and mechanical properties of heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy containing 0.003 wt% B were compared with heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy. The heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy with 0.003 wt% B contained fine and uniform W-phase particles, which exhibited optimal mechanical performance. The ultimate tensile strength, yield strength and elongation were 287.7, 125.5 MPa and 21.1%,respectively.展开更多
基金National Natural Science Foundation of China,No.82170679and Beijing Physician Scientist Training Project,China,No.BJPSTP-2024-28.
文摘Hepatic recompensation is firstly described in the Baveno VII criteria,which requires the fulfillment of strict criteria.First,a primary cause of cirrhosis must be addressed,suppressed,or cured.Second,complications of liver cirrhosis,inclu-ding ascites,encephalopathy,and variceal hemorrhage,must disappear without any intervention.Finally,liver function indicators must be improved.Moreover,without addressing/suppressing/curing cirrhosis and improvement in liver syn-thetic function,complications,including ascites and variceal hemorrhage can be improved by a transjugular intrahepatic portosystemic shunt(TIPS),which is not evidence of hepatic recompensation.Therefore,on the basis of the definition of hepatic recompensation,TIPS does not achieve hepatic recompensation.
基金supported by the National Natural Science Foundation of China(Nos.50571073,51574175 and 51474153)the Ph. D. Programs Foundation of Ministry of Education of China(20111402110004)the Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and the mechanical properties were investigated. The results showed that Li is an effective element to refine the grains and break the eutectic networks in as-cast MgGd_3Zn_1 alloy. During solid solution treatment, these broken eutectic networks are spheroidized and highly dispersed. In addition, plentiful lamellar long period stacking ordered(LPSO) phases are precipitated in an α-Mg matrix when the Li addition is not more than 4%. Solid-solution treated Mg_(92)Gd_3Zn_1Li_4 alloy exhibits an optimal ultimate tensile strength(UTS) of 226 MPa and elongation of 5.8%. The strength of MgGd_3Zn_1 alloy is improved significantly, meanwhile, the toughness is apparently increased.
基金Projects(51574175,51474153) supported by the National Natural Science Foundation of China
文摘A type of biomedical magnesium alloy Mg-3Zn-1Y-0.6Zr-0.5Ca was cast and extruded at three extrusion temperatures of 270, 300 and 330 °C. The microstructure and mechanical properties of the cast and extruded alloys, tailored at different extrusion parameters, were investigated using tensile tests, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, transmission electron microscopy and electron backscattered diffraction. Optimum comprehensive mechanical properties are achieved in the alloy extruded at 270 °C, the ultimate tensile strength and the elongation reach 315 MPa and 26%, respectively, which is deemed to be associated with the grain refinement, weak basal texture and second phases strengthening. After hot extrusion, extensive dynamic recrystallization is found in the Mg-3Zn-1Y-0.6Zr-0.5Ca alloy. Continuous Mg3YZn6 phase bands are gradually broken into discontinuous chain-like or dot-like structures, and the grains distribute more uniformly. The as-extruded Mg-3Zn-1Y-0.6Zr-0.5Ca alloy exhibits a weak texture with (0001) basal planes parallel to the extrusion direction.
文摘Objective To evaluate the feasibility of whole body diffusion weighted imaging (DWI) in bone metastasis detection using bone scintigraphy as comparison. Methods Forty-five patients with malignancy history were enrolled in our study. All the patients received the whole body DWI and bone scintigraphy scan within 1 week. The magnetic resonance (MR) examination was performed on 3.0T MR scanner using embedded body coil. The images were reviewed separately by two radiologists and two nuclear medicine physicians, who were blinded to the results of the other imaging modality. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the two techniques for detecting bone metastasis were analyzed. Results A total of 181 metastatic lesions in 77 regions of 34 patients were detected by whole body DWI, and 167 metastatic lesions in 76 regions of 31 patients were identified by bone scintigraphy. The patient-based sensitivity and PPV of whole body DWI and bone scintigraphy were similar (89.5% vs. 81.6%, 97.1% vs. 91.2%), whereas, the patient-based specificity and NPV of whole body DWI were obviously higher than those of bone scintigraphy (85.7% vs. 57.1%, 60.0% vs. 36.4%). Ten regions negative in scintigraphy but positive in whole body DWI, mainly located in spine, pelvis, and femur; nine regions only detected by scintigraphy, mainly located in skull, sternum, clavicle, and scapula. The region-based sensitivity and specificity of whole body DWI were slightly higher than those of bone scintigraphy (89.5% vs. 88.4%, 95.6% vs. 87.6%). Conclusion Whole body DWI reveals excellent concordance with bone scintigraphy regarding detection of bone metastasis, and the two techniques are complementary for each other.
基金financial support of the National High-Tech Research and Development Program of China (No. 2012AA06A118)the Natural Science Foundation of Inner Mongolia (No. 2014MS0521)the Key Science & Technology Development Project of Baotou City (No. 2013Z1016)
文摘To realize the comprehensive utilization of coal-fired industrial solid wastes, a novel high-strength board was prepared from calcium silicate slag, fly ash, and flue gas desulfurization(FGD) gypsum. The changes in mineral phases, chemical structure, and morphology during hydration were investigated by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and scanning electron microscopy(SEM). A traditional board made from quartz and lime was prepared as a reference. The novel board not only consumes a lot of solid wastes, but also meets the strength requirement of the class-five calcium silicate board according to the Chinese Standard JC/T 564.2—2008. Microanalysis showed that hydrated calcium silicate gel(C-S-H(I)), ettringite, tobermorite, and xonotlite were successively generated in the novel board by synergistic hydration of the mixed solid wastes. The board strength was improved by the formation of tobermorite and xonotlite but decreased by unhydrated quartz. It was demonstrated that quartz was not completely hydrated in the traditional board. As a result, the flexural strength of the traditional board was much lower than that of the novel board.
基金Supported by National Natural Science Foundation of China, No. 30171135 National Key Program for Basic Research of China, No. 2001CCA00700
文摘AIM: To determine the role of acupuncture therapy in treating experimental gastric ulcer in rats.METHODS: Twenty-eight adult male Sprague-Dawley rats were randomly divided into four groups (pre-acupuncture group; acupuncture group; paradistance-acupuncture group;and control group), and pre-acupuncture, paradistanceacupuncture, and control groups received 5 μL acetic acid (200 mL/L HAc) injection after a same course of electroacupuncture (EA) treatment (4 Hz, 0.6 mA, 0.45 ms,45 min for 4 d). The rats in these three groups recovered within 4 d. The acupuncture group received EA therapy for 4 d, after HAc injection. The stomach was dissected to compare the pathological structures of ulcer. Also c-Fos activation in the nuclei of solitary tract (NTS) was observed under microscope after regular immunohistochemistry staining of brain stem sections.RESULTS: The number of ulcers was different among the four groups, especially between control group and paradistance-acupuncture group or pre-acupuncture group. In the latter group, the number of ulcers was much less. The gastric ulcer area was consistent with the histopathological results, indicating that pre-acupuncture had an obvious therapeutic effect on gastric ulcers.Acupuncture had a very modest effect and paradistanceacupuncture had no effect on gastric ulcers. No therapeutic effect was found in the control group. Fos-Li neurons in NTS induced by noxious gastric ulcer showed a significant difference between pre-acupuncture and control groups.CONCLUSION: Acupuncture before ulceration can obviously alleviate ulcer. The production of c-Fos proves that the vagus nerve mediates the induction of c-Fos in nuclei of solitary tract following experimental ulceration,suggesting that parasympathetic afferents promote the process of noxious visceral stimulation.
基金financially supported by the National Natural Science Foundation of China(51474153).
文摘AZ91 D and 8.5 vol.%SiC_(p)/AZ91 D magnesium matrix composites were fabricated by a semi-solid extruded processing method,and treated with solution and aging heat treatment.The effects of SiC_(p)on the microstructures of the semi-solid extruded AZ91 D magnesium alloy during recrystallization were studied by observing and analyzing the microstructure evolution during extrusions and heat treatments.The results show that the addition of SiC_(p)inhibits the dynamic recrystallization of AZ91 D during the semi-solid extrusion with only 26% of the volume fraction of recrystallization.Furthermore,the addition of SiC_(p)refines the sizes of grains and second phases,and upgrades the volume fraction of second phase.After solution and aging treatment,the recrystallization continues,and the addition of SiC_(p)promotes the recrystallization and the recrystallized microstructure is much more stable.Meanwhile,the sizes of grains and second phases continue to be refined,and the volume fraction of second phases continues to increase.
基金financially supported by the National Natural Science Foundation of China(No.51474153)
文摘Aluminum matrix composites reinforced with mechanical alloying particles(SiC_p) were fabricated by the semisolid stirring pouring method. The inf luence of mechanical alloying particles and Mg on the microstructure and mechanical properties of the composites was investigated by means of optical microscopy(OM), X-ray diffraction scanning(XRD), electron microscopy(SEM) and energy dispersive spectroscopy(EDS). Results show that the addition of Mg converts the agglomerate mechanical al oying particles in ZL101 matrix composites into dispersed distribution in ZL101-Mg matrix composites, large matrix grains into f ine equiaxed matrix grains, and eutectic phase into f ine particles. So the mechanical properties of ZL101-Mg matrix composites are better than those of ZL101 matrix composites. The mechanical properties of ZL101/ZL101-Mg matrix composites are gradually increased with the increase of the volume fraction of mechanical alloying particles. When the volume fraction of mechanical alloying particles is 3%, the Vickers hardness and ultimate tensile strength of the ZL101/ZL101-Mg matrix composites reach their maximum values.
基金supported by the National Natural Science Foundation of China under Grant Nos 51872328,11622437,11574394,11774423 and 11822412the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB30000000+5 种基金the Ministry of Science and Technology of China under Grant No 2016YFA0300504the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(RUC)(15XNLQ07,18XNLG14,19XNLG17)supported by the National Natural Science Foundation of China under Grant Nos 11774007 and U1832214supported by the Outstanding Innovative Talents Cultivation Funded Programs 2018 of Renmin University of Chinasupported by the U.S. Department of Energy,Office of Science,Basic Energy Sciences,Division of Materials Sciences and Engineering
文摘We report protonation in several compounds by an ionic-liquid-gating method, under optimized gating conditions.This leads to single superconducting phases for several compounds. Non-volatility of protons allows post-gating magnetization and transport measurements. The superconducting transition temperature Tc is enhanced to 43.5 K for FeSe0.93S0.07, and 41 K for Fe Se after protonation. Superconducting transitions with Tc^15 K for ZrNCl,~7.2 K for 1-TaS2, and ~3.8 K for Bi2Se3 are induced after protonation. Electric transport in protonated FeSe0.93S0.07 confirms high-temperature superconductivity. Our ^1H nuclear magnetic resonance(NMR)measurements on protonated Fe Se1-xSx reveal enhanced spin-lattice relaxation rate 1/^1T1 with increasing x,which is consistent with the LDA calculations that H+ is located in the interstitial sites close to the anions.
基金financially supported by the National Natural Science Foundation of China(Nos.50571073,51574175 and 51474153)Ph.D.Programs Foundation of Ministry of Education of China(20111402110004)Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic structure phase (W phase), and the Mg95Y2.5Zn2.5 alloy has the best comprehensive mechanical properties. Subsequently, the microstructure evolution of the optimized alloy Mg95Y2.5Zn2.5 during solidification and heat treatment processes was analyzed and discussed by means of OM, SEM, TEM, XRD and DTA. After heat treatment, the lamellar phase 14H-LPSO precipitated in a-Mg and W phase transforms into particle phase (MgyZn2). Due to the compound reinforcement effect of the particle phase and LPSO phase (18R+14H), the mechanical properties of the alloy are enhanced. The tensile strength and elongation of the Mg95Y2.5Zn2.5 alloy is improved by 9.1% and 31.3% to 215 MPa and 10.5%, respectively, after solid-solution treatment.
基金support by the Fund for Young Scholars of Taiyuan University of Technology (No. 2012L003)the Ph.D. Programs Foundation of Ministry of Education of China (No.20111402110004)
文摘The medium and warm deformation behaviors of an indirect-extruded Mg-8Sn-IAI-IZn alloy were investigated by compression tests at temperatures between 298 and 523 K and strain rates of 0.001-10 s-1. It was found that the twinning-slip transition temperature was strain rate dependent, and all the true stress-true strain curves could be divided into two groups: concave and convex curves. Associated microstructural investigations indicated that the dynamic recrystallization (DRX) be- havior of the alloy varied with deformation conditions. At high strain rate and low temperature, dynamically recrystallized grains preferentially nucleated and developed in the twinned regions, indicating that twinning-induced DRX was dominant. While, at low strain rate, DRX developed extensively at grain boundaries and twins, and the process of twinning contributed to both oriented nucleation and selective growth. For the studied alloy, cracks mainly initiated from the shear band and twinning lamellar over the ranges of temperature and strain rate currently applied.
基金supported by the National Natural Science Foundation of China(Nos.51574175 and 51474153)the Ph.D.Programs Foundation of Ministry of Education of China(No. 20111402110004)the Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-solution (T4) and aging-treated (T6) alloys in 1% NaC1 solution are studied. The hydrogen evolution and electrochemical measurements display that the as-cast Mg95.sGd3Zn1Zro.2 alloy with the continuous network eutectic phase exhibits the greatest corrosion resistance, while T6 sample with some needle-like phases and the particle phases is the worst among the three alloys. It is proposed to be mainly related to the amount, composition, microstructure and distribution of the precipitated phases.
基金support from the National Natural Science Foundation of China(Nos.51474153 and 51574175)Ph.D.Programs Foundation of Ministry of Education of the People’s Republic of China(No.20111402110004)Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘The spheroidizing mechanism of W-phase in the Mg–Zn–Y–Mn–(B) alloys during solid-solution treatment was investigated by using kinetic methodologies. The microstructure and mechanical properties of heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy containing 0.003 wt% B were compared with heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy. The heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy with 0.003 wt% B contained fine and uniform W-phase particles, which exhibited optimal mechanical performance. The ultimate tensile strength, yield strength and elongation were 287.7, 125.5 MPa and 21.1%,respectively.