We study the multistability of fixed points for a dimerized system of Rydberg atoms driven by two laser fields and trapped in a two-dimensional(2D)square lattice.For identical driving fields,the fixed points of this s...We study the multistability of fixed points for a dimerized system of Rydberg atoms driven by two laser fields and trapped in a two-dimensional(2D)square lattice.For identical driving fields,the fixed points of this system exhibit stable uniform,unstable uniform,stable nonuniform,or oscillating nonuniform phases in the presence of a bistable region.For different driving fields,however,all(stable,unstable,or oscillating)phases become nonuniform instead,which then results in two islets isolated from the mainland of Rydberg excitation.We also show that a tristable region may stretch out from the(nonuniform)bistable region near the islets,indicating that a richer phase diagram can be attained by tuning the Rabi frequencies and/or detunings of the driving fields.Last but not least,the fixed points can adiabatically evolve from the islets to the mainland but can not inversely evolve from the mainland to the islets.展开更多
We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns o...We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns out to be a manybody problem in the presence of van der Waals(vd W)interaction among atoms in the upmost Rydberg state,so Monte Carlo(MC)calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius.It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension,unitary vd W shift,probe Rabi frequency,and coupling detuning.Through modulating these parameters,it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window.Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vd W interactions of Rydberg atoms.展开更多
Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cos...Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cost disin- fectant. Methods: An experimental prototype with an active circulation mode was designed to use CD gas to disinfect gastrointestinal endoscopes. One type of testing device composed of polytetrafluoroethylene (PTFE) tubes (2 m long, inner diameter 1 mm) and bacterial carrier containers was used to simulate the channel of the endoscope. PTFE bacterial carriers inoculated with Bacillus atrophaeus with or without organic burden were used to evaluate the spor- icidal activity of CD gas. Factors including exposure dosage, relative humidity (RH), and flow rate (FR) influencing the disinfection effect of CD gas were investigated. Moreover, an autoptic disinfecting test on eight real gastrointestinal endoscopes after clinical use was performed using the experimental prototype. Results: IRH, exposure dosage, or- ganic burden, and the FIR through the channel significantly (P〈0.05) affected the disinfection efficacy of CD gas for a long and narrow lumen. The log reduction increased as FR decreased. Treatment with 4 mg/L CD gas for 30 min at 0.8 L/min FR and 75% IRH, resulted in complete inactivation of spores. Furthermore, all eight endoscopes with a maximum colony-forming unit of 915 were completely disinfected. The cost was only 3 CNY (0.46 USD) for each endoscope. Conclusions: The methods and results reported in this study could provide a basis for further studies on using CD gas for the disinfection of endoscopes.展开更多
Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety labo- ratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on si...Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety labo- ratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on six ma- terials [stainless steel (SS), painted steel (PS), polyvinyl chlorid (PVC), polyurethane (PU), glass (GS), and cotton cloth (CC)] by CD gas. The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy. Methods: Material coupons (1.2 cm diameter of SS, PS, and PU; 1.0 cmx1.0 cm for PVC, GS, and CC) were contaminated with 10 IJI of Bacillus subtilis var. niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h. The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min. Results: The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio, v/v) for 3 h] were in the range of from 1.80 to 6.64. Statistically significant differences were found in decontamination efficacies on test material coupons of SS, PS, PU, and CC between with and without a 1-h prehumidification treatment. With the extraction method, there were no statistically significant differences in the recovery ratios between the porous and non-porous materials. Conclusions: The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.展开更多
The typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity slope at one edge of an optically induced stop-band in atoms loaded into an o...The typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity slope at one edge of an optically induced stop-band in atoms loaded into an optical lattice.In this paper,this phenomenon is demonstrated for the periodically trapped and coherently driven cold 87Rb atoms,where radiation damping might be much larger than that anticipated in previous proposals and become comparable with radiation pressure.Such an enhancement could be observed even at speeds of only a few meters per second with less than 1.0%absorption,making radiation damping experimentally accessible.展开更多
We study optomechanically induced amplification and perfect transparency in a double-cavity op- tomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive th...We study optomechanically induced amplification and perfect transparency in a double-cavity op- tomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive the system, optomechanically induced amplification of a probe laser can occur. In addition, perfect optomechanieally induced transparency, which is robust to mechanical dissipation, can be realized by the same type of driving. These results indicate important progress toward signal amplification, light storage, fast light, and slow light in quantum information processes.展开更多
We theoretically propose a photonic flash based on a linearly coupled cavity system. Via driving the two side cavities by external fields, it forms a cyclic energy-level diagram and therefore the phase difference betw...We theoretically propose a photonic flash based on a linearly coupled cavity system. Via driving the two side cavities by external fields, it forms a cyclic energy-level diagram and therefore the phase difference between the driving fields acts as a controller of the steady state due to the quantum interference effect. In the optical trimer structure,we show that the perfect photonic flash can be realized in the situation of resonant driving. The perfect photonic flash scheme is furthermore generalized to multiple coupled cavity system, where the cavities with odd and even number turn bright and dark alternatively. Our proposal may be applied for designing the quantum neon and realizing a controllable photonic localization.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534002 and 11674049)
文摘We study the multistability of fixed points for a dimerized system of Rydberg atoms driven by two laser fields and trapped in a two-dimensional(2D)square lattice.For identical driving fields,the fixed points of this system exhibit stable uniform,unstable uniform,stable nonuniform,or oscillating nonuniform phases in the presence of a bistable region.For different driving fields,however,all(stable,unstable,or oscillating)phases become nonuniform instead,which then results in two islets isolated from the mainland of Rydberg excitation.We also show that a tristable region may stretch out from the(nonuniform)bistable region near the islets,indicating that a richer phase diagram can be attained by tuning the Rabi frequencies and/or detunings of the driving fields.Last but not least,the fixed points can adiabatically evolve from the islets to the mainland but can not inversely evolve from the mainland to the islets.
基金the National Natural Science Foundation of China(Grant No.12074061)。
文摘We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency(EIT).It turns out to be a manybody problem in the presence of van der Waals(vd W)interaction among atoms in the upmost Rydberg state,so Monte Carlo(MC)calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius.It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension,unitary vd W shift,probe Rabi frequency,and coupling detuning.Through modulating these parameters,it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window.Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vd W interactions of Rydberg atoms.
基金Project supported by the National High-Tech R&D Program(863)of China(No.2014AA021405)
文摘Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cost disin- fectant. Methods: An experimental prototype with an active circulation mode was designed to use CD gas to disinfect gastrointestinal endoscopes. One type of testing device composed of polytetrafluoroethylene (PTFE) tubes (2 m long, inner diameter 1 mm) and bacterial carrier containers was used to simulate the channel of the endoscope. PTFE bacterial carriers inoculated with Bacillus atrophaeus with or without organic burden were used to evaluate the spor- icidal activity of CD gas. Factors including exposure dosage, relative humidity (RH), and flow rate (FR) influencing the disinfection effect of CD gas were investigated. Moreover, an autoptic disinfecting test on eight real gastrointestinal endoscopes after clinical use was performed using the experimental prototype. Results: IRH, exposure dosage, or- ganic burden, and the FIR through the channel significantly (P〈0.05) affected the disinfection efficacy of CD gas for a long and narrow lumen. The log reduction increased as FR decreased. Treatment with 4 mg/L CD gas for 30 min at 0.8 L/min FR and 75% IRH, resulted in complete inactivation of spores. Furthermore, all eight endoscopes with a maximum colony-forming unit of 915 were completely disinfected. The cost was only 3 CNY (0.46 USD) for each endoscope. Conclusions: The methods and results reported in this study could provide a basis for further studies on using CD gas for the disinfection of endoscopes.
基金Project supported by the National Key Science and Technology Specific Project for Prevention and Treatment of Major Infectious Diseases in China (No. 2009ZX10004-709)the National Key Technology R&D Program in the 11th Five-Year Plan of China (No.2008BAI62B01)
文摘Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety labo- ratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on six ma- terials [stainless steel (SS), painted steel (PS), polyvinyl chlorid (PVC), polyurethane (PU), glass (GS), and cotton cloth (CC)] by CD gas. The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy. Methods: Material coupons (1.2 cm diameter of SS, PS, and PU; 1.0 cmx1.0 cm for PVC, GS, and CC) were contaminated with 10 IJI of Bacillus subtilis var. niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h. The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min. Results: The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio, v/v) for 3 h] were in the range of from 1.80 to 6.64. Statistically significant differences were found in decontamination efficacies on test material coupons of SS, PS, PU, and CC between with and without a 1-h prehumidification treatment. With the extraction method, there were no statistically significant differences in the recovery ratios between the porous and non-porous materials. Conclusions: The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.
基金This work is supported by the National Natural Science Foundation of China(11104112)the National Basic Research Program of China(2011CB921603)the CRUI-British Council 2011 Exchange Program and the Fondo di Ateneo of the Brescia University
文摘The typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity slope at one edge of an optically induced stop-band in atoms loaded into an optical lattice.In this paper,this phenomenon is demonstrated for the periodically trapped and coherently driven cold 87Rb atoms,where radiation damping might be much larger than that anticipated in previous proposals and become comparable with radiation pressure.Such an enhancement could be observed even at speeds of only a few meters per second with less than 1.0%absorption,making radiation damping experimentally accessible.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 61378094 and 11174027) and the Natural Science Foundation of Heilongjiang Province, China (No. A201402). W. Z. Jia was supported by the National Natural Science Foundation of China under Grants Nos. 11347001 and 11404269, the Fundamental Research Funds for the Central Universities (Grant No. 2682014RC21).
文摘We study optomechanically induced amplification and perfect transparency in a double-cavity op- tomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive the system, optomechanically induced amplification of a probe laser can occur. In addition, perfect optomechanieally induced transparency, which is robust to mechanical dissipation, can be realized by the same type of driving. These results indicate important progress toward signal amplification, light storage, fast light, and slow light in quantum information processes.
基金Supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.11404021,11534002,11674049Jilin Province Science and Technology Development Plan under Grant No.20170520132JHFundamental Research Funds for the Central Universities under Grant Nos.2412016KJ015 and 2412016KJ004
文摘We theoretically propose a photonic flash based on a linearly coupled cavity system. Via driving the two side cavities by external fields, it forms a cyclic energy-level diagram and therefore the phase difference between the driving fields acts as a controller of the steady state due to the quantum interference effect. In the optical trimer structure,we show that the perfect photonic flash can be realized in the situation of resonant driving. The perfect photonic flash scheme is furthermore generalized to multiple coupled cavity system, where the cavities with odd and even number turn bright and dark alternatively. Our proposal may be applied for designing the quantum neon and realizing a controllable photonic localization.