For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bron...For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.展开更多
Animal models provide myriad benefits to both experimental and clinical research.Unfortunately,in many situations,they fall short of expected results or provide contradictory results.In part,this can be the result of ...Animal models provide myriad benefits to both experimental and clinical research.Unfortunately,in many situations,they fall short of expected results or provide contradictory results.In part,this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism.To improve the efficacy of animal models,a technological breakthrough is required.The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform.In the present study,we introduce the concept of the comparative systems biology,which we define as“comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels”.Furthermore,we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.展开更多
Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the resul...Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.展开更多
文摘For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.
基金This work was supported by the National Natural Science Foundation of China(31123005)the Chinese Academy of Sciences(Y002731071)the National Basic Research Program of China(2009CB941300)。
文摘Animal models provide myriad benefits to both experimental and clinical research.Unfortunately,in many situations,they fall short of expected results or provide contradictory results.In part,this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism.To improve the efficacy of animal models,a technological breakthrough is required.The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform.In the present study,we introduce the concept of the comparative systems biology,which we define as“comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels”.Furthermore,we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.
基金supported by the National Natural Science Foundation of China (31123005)the Chinese Academy of Sciences (Y002731071)the National Basic Research Program of China (2009CB941300)
文摘Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.