期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Free radicals trigger the closure of open pores in lignin-derived hard carbons toward improved sodium-storage capacity 被引量:1
1
作者 Wen-Jun Ji Zong-Lin Yi +8 位作者 Ming-Xin Song Xiao-Qian Guo Yi-Lin Wang Yi-Xuan Mao Fang-Yuan Su jing-peng chen Xian-Xian Wei Li-Jing Xie cheng-Meng chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期551-559,共9页
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag... The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors. 展开更多
关键词 Hard carbon Chemical activation Free radical SELF-HEALING Closed pores Sodium ion batteries
下载PDF
Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries 被引量:5
2
作者 Ming-Xin Song Li-Jing Xie +6 位作者 Jia-Yao cheng Zong-Lin Yi Ge Song Xiao-Yang Jia jing-peng chen Quan-Gui Guo cheng-Meng chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期448-458,I0012,共12页
Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.Howe... Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.However,starch usually suffers from severe foaming and low carbon yield during direct pyrolysis.Herein,we report a simple and eco-friendly dry strategy,by maleic anhydride initiating the esterification of starch,to design carbon microspheres against the starch foaming.Moreover,the infuence of ester grafting on the pyrolytic behavior of starch is also focused.The formation of ester groups in precursor guarantees the structural stability of starch-based intermediate because it can promote the accumulation of unsaturated species and accelerate the water elimination during pyrolysis.Meanwhile,the esterification and dehydration reactions greatly deplete the primary hydroxyl groups in the starch molecules and thus the rapid levoglucosan release is inhibited,which well keeps the spherical morphology of starch and ensures the high carbon yield.In further exploration as anode materials for Lithium-ion batteries,the obtained carbon microspheres exhibit good cyclability and rate performance with a reversible capacity of 444 m Ah g^(-1)at 50 m A g^(-1).This work provides theoretical fundamentals for the controllable thermal transformation of biomass towards wide applications. 展开更多
关键词 Maleic anhydride esterified starch Dry strategy Thermochemical evolution Hard carbon microspheres Lithium-ion batteries
下载PDF
Combined DFT and experiment:Stabilizing the electrochemical interfaces via boron Lewis acids 被引量:1
3
作者 Zhe-Fan Wang Zonglin Yi +6 位作者 Aziz Ahmad Lijing Xie jing-peng chen Qingqiang Kong Fangyuan Su Da-Wei Wang cheng-Meng chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期100-107,I0004,共9页
The incorporation of boron into carbon material can significantly enhance its capacity performances.However,the origin of the promotion effect of boron doping on electrochemical performances is still unclear,in part d... The incorporation of boron into carbon material can significantly enhance its capacity performances.However,the origin of the promotion effect of boron doping on electrochemical performances is still unclear,in part due to the inadequate exposure of boron configurations resulting from the complexity of traditional carbon materials.To overcome this issue,herein,a series of boron-doped graphene with highly-exposed boron configurations are prepared by tuning annealing temperature.Then the correlation between boron configurations and the electrochemical performances is investigated.The combination of density-functional theory(DFT)computation and NH3-TPD/Py-FTIR indicates that the BCO_(2)configuration formed on the surface of graphene is easier to accept lone-pair electrons than BC_(2)O and BC_(3)configurations due to the stronger Lewis acidity.Such an electronic structure can effectively reduce the number of unstable electron donors and stabilize the electrochemical interface,which is proved by NMR,and critical for improving the electrochemical performances.Further experiments confirm that the optimized BG800 with the largest amount of BCO_(2)configuration presents ultralow leak current,improved cyclic stability,and better rate performance in SBPBF4/PC.This work would provide an insight into the design of high-performance boron-doped carbon materials towards energy storage. 展开更多
关键词 Boron doped graphene Lewis acid Electrochemical interfaces DFT
下载PDF
One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics 被引量:6
4
作者 Xiao Yang Xiao-Ming Li +6 位作者 Qing-Qiang Kong Zhuo Liu jing-peng chen Hui Jia Yan-Zhen Liu Li-Jing Xie cheng-Meng chen 《Science China Materials》 SCIE EI CSCD 2020年第3期392-402,共11页
Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheologica... Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheological properties(viscosity and thixotropy)for screen printing.The as-printed coatings based on the above ink are uniform and dense on a polyimide substrate,and exhibit a sandwich-type conductive three dimensional network at the microscale.The resistivity of the typical composite coating is as low as 0.23±0.01Ωcm(92±4Ωsq^-1,25μm),which is 30%as that of a pure CB coating(0.77±0.01Ωcm).It is noteworthy that the resistivity decreases to 0.18±0.01Ωcm(72±4Ωsq^-1,25μm)after a further rolling compression.The coating exhibits good mechanical flexibility,and the resistance slightly increases by 12%after 3000 bending cycles.With the CB/GSs composite coatings as a flexible conductor,fascinating luminescent bookmarks and membrane switches were fabricated,demonstrating the tremendous potential of these coatings in the commercial production of flexible electronics and devices. 展开更多
关键词 GRAPHENE carbon black conductive inks printed electronics one-pot ball-milling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部