期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater 被引量:8
1
作者 Lu Xu Jiang-Tao Hu +7 位作者 Hong-Juan Ma Chang-Jian ling Mou-Hua Wang Rong-Fang Shen Xiao-Jing Guo Yin-Ning Wang jing-ye li Guo-Zhong Wu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第4期13-18,共6页
An amidoxime-based polymeric adsorbent was prepared by pre-irradiation grafting of acrylonitrile and acrylic acid onto high-density polyethylene fibers using electron beams,followed by amidoximation.Quantitative recov... An amidoxime-based polymeric adsorbent was prepared by pre-irradiation grafting of acrylonitrile and acrylic acid onto high-density polyethylene fibers using electron beams,followed by amidoximation.Quantitative recovery of uranium was investigated by flow-through experiment using simulated seawater and marine test in natural seawater.The maximum amount of uranium uptake was 2.51 mg/g-ads after 42 days of contact with simulated seawater and 0.13 mg/g-ads for 15 days of contact with natural seawater.A lower uranium uptake in marine test can be attributed to the short adsorption time and the contamination of marine microorganisms and iron.However,the high selectivity toward uranium against vanadium may be beneficial to harvest uranyl ion onto adsorbents and the economic feasibility for recovery of uranium from seawater. 展开更多
关键词 RADIATION-INDUCED GRAFTING AMIDOXIME ACRYLONITRILE URANIUM Selectivity
下载PDF
Nonlinear amplitude versus angle inversion for transversely isotropic media with vertical symmetry axis using new weak anisotropy approximation equations 被引量:6
2
作者 lin Zhou Zhuo-Chao Chen +3 位作者 jing-ye li Xiao-Hong Chen Xing-Ye liu Jian-Ping liao 《Petroleum Science》 SCIE CAS CSCD 2020年第3期628-644,共17页
In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs wit... In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data. 展开更多
关键词 Transversely isotropic media with vertical symmetry axis(VTI) New reduced approximation equations Differentiable Laplace distribution Blockiness constraint
下载PDF
Lithofacies identi cation using support vector machine based on local deep multi-kernel learning 被引量:5
3
作者 Xing-Ye liu lin Zhou +1 位作者 Xiao-Hong Chen jing-ye li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期954-966,共13页
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie... Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM. 展开更多
关键词 Lithofacies discriminant Support vector machine Multi-kernel learning Reservoir prediction Machine learning
下载PDF
Radiation graft of acrylamide onto polyethylene separators for lithium-ion batteries 被引量:1
4
作者 Xiao-li Miao Ji-Hao li +3 位作者 Qun Xiang Jia-Qiang Xu lin-Fan li jing-ye li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第6期108-114,共7页
To improve the affinity between separators and electrolyte in lithium-ion battery,microporous polyethylene(PE) separator was grafted of polyacrylamide(PAAm) by radiation.Chemical structure of the PAAmgrafted PE separa... To improve the affinity between separators and electrolyte in lithium-ion battery,microporous polyethylene(PE) separator was grafted of polyacrylamide(PAAm) by radiation.Chemical structure of the PAAmgrafted PE separators(denoted as PE-g-PAAm) was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Properties of the pristine PE and PE-g-PAAm were tested by scanning electron microscope,liquid electrolyte uptake and lithium-ion conductivity.Electrochemical performances of the grafted PE separators(up to 0.76 × 10^(-3) S/cm of ionic conductivity at room temperature) were much better than pristine PE,and performance of the battery with the grafted separator behaved better than with the virgin PE separator,under the same condition(assembled in Ar-filled glove box). 展开更多
关键词 LITHIUM-ION battery POLYETHYLENE ACRYLAMIDE Irradiation GRAFT SEPARATOR
下载PDF
Radiation-induced cross-linking:a novel avenue to permanent 3D modification of polymeric membranes 被引量:1
5
作者 Yu Gu Bo-Wu Zhang +4 位作者 Zhen Guo Ji-Hao li Ming Yu lin-Fan li jing-ye li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第7期31-45,共15页
Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simp... Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simple but effective 3D modification approach was designed for permanently functionalizing polymeric membranes by directly cross-linking polyvinyl alcohol(PVA)under gamma-ray irradiation at room temperature without any additives.After the modification,a PVA layer was constructed on the membrane surface and the pore inner surface of polyvinylidene fluoride(PVDF)membranes.This endowed them with good hydrophilicity,low adsorption of protein model foulants,and easy recoverability properties.In addition,the pore size and distribution were customized by controlling the PVA concentration,which enhanced the rejection ability of the resultant membranes and converted them from microfiltration to ultrafiltration.The crosslinked PVA layer was equipped with the resultant membranes with good resistance to chemical cleaning by acidic,alkaline,and oxidative reagents,which could greatly prolong the membrane service lifetime.Furthermore,this approach was demonstrated as a universal method to modify PVDF membranes with other hydrophilic macromolecular modifiers,including polyethylene glycol,sodium alginate,and polyvinyl pyrrolidone.This modification of the membranes effectively endowed them with good hydrophilicity and antifouling properties,as expected. 展开更多
关键词 Ultrafiltration membrane ANTIFOULING 3D modification GAMMA-RAY Cross-linking
下载PDF
Stability study of Disperse Blue 79 under ionizing radiation 被引量:1
6
作者 Xiao-Jun Ding Ming Yu +6 位作者 Xin Zheng Cui-Cui Ye Yu Gu Man-li Lu Bo-Wu Zhang lin-Fan li jing-ye li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第2期113-123,共11页
Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is imp... Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is important under ionizing radiation. Disperse Blue 79, as an example azo dyes, was irradiated with gamma rays or electron beam (EB) to investigate the radiation-induced effects on the molecular structure. Ultraviolet visible spectroscopy (UV Vis), nuclear magnetic resonance (NMR) spectra analysis, and mass spectrometry (MS) studies indicated that acetoxy and methoxyl were easily cleaved on the irradiation of the aqueous dye solution but retained a stable structure on the irradiation of the powder form. Gamma rays and EB showed similar effects on the decomposition process. Chromaticity changes using the Lab* method showed that the dye turned to dark yellow and the value of b* of the irradiated dyes increased with the increasing absorbed dose, which indicated that Disperse Blue 79 could be partly decomposed in an aqueous solution This work was nancially supported by the National Natural Science Foundation of China (Nos. 11875313, 11605274, and 11575277). Xiao-Jun Ding and Ming Yu contributed equally to this work. & Jing-Ye Li jyli@shnu.edu.cn 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Lab of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China with an absorbed dose of 10 kGy. Furthermore, the results demonstrated that the chemical stability of the Disperse Blue 79 under ionizing radiation are different in its powder form with the dye in the aqueous solution. 展开更多
关键词 Azo dyes Disperse Blue 79 STABILITY
下载PDF
Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling c-ray irradiation with borate crosslinking
7
作者 Yu-Qing Qiao Yu Gu +3 位作者 Yu-Sen Meng Hai-Xia li Bo-Wu Zhang jing-ye li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第12期13-25,共13页
Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs tha... Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs that was modified by polyvinyl alcohol(PVA)under c-ray irradiation on a cellulose acetate microporous membrane,followed by borate crosslinking.Fourier transform infrared spectroscopy,Raman spectroscopy,and thermogravimetry confirmed the success of PVA grafting onto MWCNTs and borate crosslinking between modified MWCNT nanoyarns.The as-prepared crosslinked MWCNT bucky papers(BBP membranes)were used as a solar absorber,by placing them on a paper-wrapped floating platform,for interfacial water evaporation under simulated solar irradiation.The BBP membranes showed good water tolerance and mechanical stability,with an evaporation rate of 0.79 kg m^(-2)h^(-1)and an evaporation efficiency of 56%under 1 sun illumination in deionized water.Additionally,the BBP membranes achieved an evaporation rate of 0.76 kg m^(-2)h^(-1)in both NaCl solution(3.5 wt%)and sulfuric acid solution(1 mol L-1),demonstrating their impressive applicability for water reclamation from brine and acidic conditions.An evaporation rate of 0.70 kg m-2 h-1(very close to that from deionized water)was obtained from the solar evaporation of saturated NaCl solution,and the BBP membrane exhibited unexpected stability without the inference of salt accumulation on the membrane surface during long-term continuous solar evaporation. 展开更多
关键词 c-ray irradiation Multi-walled carbon nanotubes Bucky paper Solar-driven interfacial water evaporation Desalination
下载PDF
A high resolution inversion method for fluid factor with dynamic dryrock V_(P)/V_(S) ratio squared
8
作者 lin Zhou Jian-Ping liao +3 位作者 Xing-Ye liu Pu Wang Ya-Nan Guo jing-ye li 《Petroleum Science》 SCIE EI CSCD 2023年第5期2822-2834,共13页
As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to intr... As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method. 展开更多
关键词 Fluid factor Dry-rock V_(P)/V_(S)ratio squared(DVRS) Dynamic variable Multiple parameters simultaneous inversion Generalized nonlinear inversion(GNI)
下载PDF
Electron-beam radiation effects on the structure and properties of polypropylene at low dose rates 被引量:5
9
作者 Heng-Ti Wang Hai-Qing Jiang +4 位作者 Rong-Fang Shen Xiao-Jun Ding Cong Zhang lin-Fan li jing-ye li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第6期101-109,共9页
While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irra... While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy.The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties(tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation(chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation. 展开更多
关键词 性质变化 低剂量率 聚丙烯 电子 横梁 结构 放射 FOURIER
下载PDF
The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution
10
作者 Ya-Lei He Ji-Hao li +2 位作者 lin-Fan li Jing-Bo Chen jing-ye li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第3期80-87,共8页
Gamma-ray irradiation technique is an effective method for preparing graphene aerogel(GA).The effective reduction and self-assembly of graphene oxide(GO) sheets into 3D porous GA in ethylenediamine(EDA) aqueous soluti... Gamma-ray irradiation technique is an effective method for preparing graphene aerogel(GA).The effective reduction and self-assembly of graphene oxide(GO) sheets into 3D porous GA in ethylenediamine(EDA) aqueous solution under the protection of nitrogen have been achieved via γ-ray irradiation.The reduction degree and self-assembly process,which can be controlled by varying EDA dose and irradiation dose,are investigated by X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy,X-ray diffractometer,and thermogravimetric analysis.A reduction mechanism is proposed for interactions among EDA molecules,active radicals from the radiolysis of water,and oxygen-containing groups on GO sheets. 展开更多
关键词 Γ射线照射 氧化石墨 乙二胺 自组装 协同还原 溶液 傅里叶变换红外光谱 X射线光电子能谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部