Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of res...Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of resin,and thus significantly affect the curing performance of the photosensitive SiC slurry.In this paper,a thin silicon oxide(SiO_(2))layer was in-situ formed on the surface of SiC powders by pre-oxidation treatment.This method was proven to effectively improve the curing ability of SiC slurry.The SiC photosensitive slurry was fabricated with solid content of 55 vol%and viscosity of 7.77 Pa·s(shear rate of 30 s^(−1)).The curing thickness was 50μm with exposure time of only 5 s.Then,a well-designed sintering additive was added to completely convert low-strength SiO_(2) into mullite reinforcement during sintering.Complexshaped mullite-bond SiC ceramics were successfully fabricated.The flexural strength of SiC ceramics sintered at 1550℃in air reached 97.6 MPa with porosity of 39.2 vol%,as high as those prepared by spark plasma sintering(SPS)techniques.展开更多
基金supported by Shandong University−MSEA International Institute for Materials Genome Joint Innovation Center for Advanced Ceramics,and the Key Research and Development Projects of Shaanxi Province(Nos.2018ZDCXLGY-09-06 and 2021ZDLGY14-06).
文摘Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of resin,and thus significantly affect the curing performance of the photosensitive SiC slurry.In this paper,a thin silicon oxide(SiO_(2))layer was in-situ formed on the surface of SiC powders by pre-oxidation treatment.This method was proven to effectively improve the curing ability of SiC slurry.The SiC photosensitive slurry was fabricated with solid content of 55 vol%and viscosity of 7.77 Pa·s(shear rate of 30 s^(−1)).The curing thickness was 50μm with exposure time of only 5 s.Then,a well-designed sintering additive was added to completely convert low-strength SiO_(2) into mullite reinforcement during sintering.Complexshaped mullite-bond SiC ceramics were successfully fabricated.The flexural strength of SiC ceramics sintered at 1550℃in air reached 97.6 MPa with porosity of 39.2 vol%,as high as those prepared by spark plasma sintering(SPS)techniques.