Utilizing biomaterials in tissue engineering has shown considerable promise for tissue regeneration,particularly through delivering multimodel cell-regulatory signals,including the material-related signals and extrins...Utilizing biomaterials in tissue engineering has shown considerable promise for tissue regeneration,particularly through delivering multimodel cell-regulatory signals,including the material-related signals and extrinsic stimuli.In this research,we developed a magnetic-responsive aligned nanofiber fibrin hydrogel(MAFG),integrating the structured alignment of nanofibers and the pliability of fibrin hydrogel with an external magnetic field.This design aimed to enhance the regenerative response in spinal cord injury treatment.A medium-strength magnetic field,aligned with the spinal cord,was applied to aid motor function recovery in rats with spinal cord injuries.The use of MAFG in this context not only intensified the effect of the magnetic field but also encouraged the activation and differentiation of native neural stem cells.Furthermore,this method effectively steered macrophage polarization towards a beneficial M2 phenotype,addressing immune dysregulation at the injury site.The parallel application of magnetic field stimulation through MAFG in a spinal cord injury model contributed to the concurrent promotion of neurogenesis,angiogenesis,and immunomodulation,resulting in marked improvement in motor function in rats.This investigation underscores the therapeutic potential of magnetic field stimulation and highlights how aligning this stimulation with the spinal cord can significantly enhance the regenerative milieu at the injury site.展开更多
Considering the application requirements for modern biomedicine,research into novel biomaterials with unusual functions is highly desired.As an alternative,liquid metals(LMs),a nontraditional family of metal materials...Considering the application requirements for modern biomedicine,research into novel biomaterials with unusual functions is highly desired.As an alternative,liquid metals(LMs),a nontraditional family of metal materials,have piqued the interest of biomedical researchers and made significant advances in biomed-ical areas,owing to their shape transformability,self-healing capability,excellent electrical,and thermal conductivities.In particular,many functionalized strategies for the preparation and modification of LMs or LMs-based composites to achieve extended biomedical applications have been investigated in recent years.These findings provided inspiring while constructive reference for the fabrication and engineering of novel LMs-based composites.Herein,in this topic review,we elaborate on the recent advances of LMs-based functional materials,with particular focuses on the synthesis,modification,and bio-applications,especially in antitumor therapy,antibacterial,contrast agent for imaging,bone repair,electronic skin sen-sor,and nerve connection agent.Further on,the current challenges and future prospects of LMs-based composites are carefully discussed.展开更多
With tremendous research advances in biomedical application,liquid metals(LM)also offer fantastic chemistry for synthesis of novel nano-composites.Herein,as a pioneering trial,litchi-shaped heterogeneous eutectic gall...With tremendous research advances in biomedical application,liquid metals(LM)also offer fantastic chemistry for synthesis of novel nano-composites.Herein,as a pioneering trial,litchi-shaped heterogeneous eutectic gallium indium-Au nanoparticles(EGaIn-Au NPs),served as effective radiosensitizer and photothermal agent for radio-photothermal cancer therapy,have been successfully prepared using in situ interfacial galvanic replacement reaction.The enhanced photothermal conversion efficiency and boosted radio-sensitization effect could be achieved with the reduction of Au nanodots onto the eutectic gallium indium(EGaIn)NPs surface.Most importantly,the growth of tumor could be effectively inhibited under the combined radio-photothermal therapy mediated by EGaIn-Au NPs.Inspired by this approach,in situ interfacial galvanic replacement reaction may open a novel strategy to fabricate LM-based nano-composite with advanced multi-functionalities.展开更多
Nanoparticles induced potent antitumor immunotherapy plays a significant role for enhancing conventional therapeutic effectiveness.However,revealing the pathway of how nanoagents themselves trigger the host immunity o...Nanoparticles induced potent antitumor immunotherapy plays a significant role for enhancing conventional therapeutic effectiveness.However,revealing the pathway of how nanoagents themselves trigger the host immunity or how to maximize the immunotherapy efficacy still needs further exploration.Herein,rose-like MoS2 nanoflowers modified with 2-deoxy-D-glucose(2-DG)and glucose oxidase(GOx)(MPGGFs)have been successfully fabricated via a one-pot hydrothermal reaction and following one-by-one surface modification as a multifunctional nanocatalyst for photothermal therapy enhanced self-amplified chemodynamic immunotherapy(PTT-co-CDT).By introducing GOx,the obtained MPGGFs exhibited self-amplified chemodynamic therapeutic efficacy under hypoxia tumor microenvironment(TME)because of the raised intracellular H2O2 level via enzyme-catalysis of oxygen.Furthermore,combined with the intrinsic excellent photothermal conversion efficiency of MoS2 nanoflowers,PTT-co-CDT performances by MPGGFs could effectively induce the necroptosis of tumor cells both in vitro and in vivo.Then the induced necroptosis via PTT-co-CDT by MPGGFs could directly trigger host immunity by activating the antigen-specific T-cells(CD4^(+) and CD8^(+)).Finally,the excellent in vivo safety of MPGGFs makes us believe that the successful construction of rose-like multifunctional nanocatalyst not only has great potentials for self-amplified chemodynamic immunotherapy,but also provides a paradigm for exploring necroptosis triggered host immunity for cancer treatment.展开更多
基金funding support from the National Natural Science Foundation of China(No.32271414 and 82201521)the Tsinghua Precision Medicine Foundation(No.2022TS001).
文摘Utilizing biomaterials in tissue engineering has shown considerable promise for tissue regeneration,particularly through delivering multimodel cell-regulatory signals,including the material-related signals and extrinsic stimuli.In this research,we developed a magnetic-responsive aligned nanofiber fibrin hydrogel(MAFG),integrating the structured alignment of nanofibers and the pliability of fibrin hydrogel with an external magnetic field.This design aimed to enhance the regenerative response in spinal cord injury treatment.A medium-strength magnetic field,aligned with the spinal cord,was applied to aid motor function recovery in rats with spinal cord injuries.The use of MAFG in this context not only intensified the effect of the magnetic field but also encouraged the activation and differentiation of native neural stem cells.Furthermore,this method effectively steered macrophage polarization towards a beneficial M2 phenotype,addressing immune dysregulation at the injury site.The parallel application of magnetic field stimulation through MAFG in a spinal cord injury model contributed to the concurrent promotion of neurogenesis,angiogenesis,and immunomodulation,resulting in marked improvement in motor function in rats.This investigation underscores the therapeutic potential of magnetic field stimulation and highlights how aligning this stimulation with the spinal cord can significantly enhance the regenerative milieu at the injury site.
基金financially supported by the National Natural Science Foundation of China (No.51971116)the UTokyo-Tsinghua Collaborative Research Fund (No.20213080033)the Open Funding Project of the State Key Laboratory of Biochemical Engineering (No.2021KF-04).
文摘Considering the application requirements for modern biomedicine,research into novel biomaterials with unusual functions is highly desired.As an alternative,liquid metals(LMs),a nontraditional family of metal materials,have piqued the interest of biomedical researchers and made significant advances in biomed-ical areas,owing to their shape transformability,self-healing capability,excellent electrical,and thermal conductivities.In particular,many functionalized strategies for the preparation and modification of LMs or LMs-based composites to achieve extended biomedical applications have been investigated in recent years.These findings provided inspiring while constructive reference for the fabrication and engineering of novel LMs-based composites.Herein,in this topic review,we elaborate on the recent advances of LMs-based functional materials,with particular focuses on the synthesis,modification,and bio-applications,especially in antitumor therapy,antibacterial,contrast agent for imaging,bone repair,electronic skin sen-sor,and nerve connection agent.Further on,the current challenges and future prospects of LMs-based composites are carefully discussed.
基金supported by grants of the National Natural Science Foundation of China(Nos.5197116,81671829).
文摘With tremendous research advances in biomedical application,liquid metals(LM)also offer fantastic chemistry for synthesis of novel nano-composites.Herein,as a pioneering trial,litchi-shaped heterogeneous eutectic gallium indium-Au nanoparticles(EGaIn-Au NPs),served as effective radiosensitizer and photothermal agent for radio-photothermal cancer therapy,have been successfully prepared using in situ interfacial galvanic replacement reaction.The enhanced photothermal conversion efficiency and boosted radio-sensitization effect could be achieved with the reduction of Au nanodots onto the eutectic gallium indium(EGaIn)NPs surface.Most importantly,the growth of tumor could be effectively inhibited under the combined radio-photothermal therapy mediated by EGaIn-Au NPs.Inspired by this approach,in situ interfacial galvanic replacement reaction may open a novel strategy to fabricate LM-based nano-composite with advanced multi-functionalities.
基金the National Natural Science Foundation of China(Nos.81671829,21788102,and 51971116)Many thanks to Hunan Provincial Innovation Foundation for Postgraduate(No.2020zzts079)。
文摘Nanoparticles induced potent antitumor immunotherapy plays a significant role for enhancing conventional therapeutic effectiveness.However,revealing the pathway of how nanoagents themselves trigger the host immunity or how to maximize the immunotherapy efficacy still needs further exploration.Herein,rose-like MoS2 nanoflowers modified with 2-deoxy-D-glucose(2-DG)and glucose oxidase(GOx)(MPGGFs)have been successfully fabricated via a one-pot hydrothermal reaction and following one-by-one surface modification as a multifunctional nanocatalyst for photothermal therapy enhanced self-amplified chemodynamic immunotherapy(PTT-co-CDT).By introducing GOx,the obtained MPGGFs exhibited self-amplified chemodynamic therapeutic efficacy under hypoxia tumor microenvironment(TME)because of the raised intracellular H2O2 level via enzyme-catalysis of oxygen.Furthermore,combined with the intrinsic excellent photothermal conversion efficiency of MoS2 nanoflowers,PTT-co-CDT performances by MPGGFs could effectively induce the necroptosis of tumor cells both in vitro and in vivo.Then the induced necroptosis via PTT-co-CDT by MPGGFs could directly trigger host immunity by activating the antigen-specific T-cells(CD4^(+) and CD8^(+)).Finally,the excellent in vivo safety of MPGGFs makes us believe that the successful construction of rose-like multifunctional nanocatalyst not only has great potentials for self-amplified chemodynamic immunotherapy,but also provides a paradigm for exploring necroptosis triggered host immunity for cancer treatment.