Ternary multifunctional A<sub>1</sub>Zn<sub>y</sub>Zr<sub>z</sub>O<sub>n</sub> catalysts are prepared by introducing A-site transition metals with the redox capability i...Ternary multifunctional A<sub>1</sub>Zn<sub>y</sub>Zr<sub>z</sub>O<sub>n</sub> catalysts are prepared by introducing A-site transition metals with the redox capability into binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub>. Structure and morphology were investigated by means of XRD, BET and FESEM, respectively. Activity data showed that Cr addition exhibited obvious beneficial effect to promote isobutene production from direct conversion of bio-ethanol compared to other A-site metal dopants. A significant higher yield of isobutene over Cr-promoted Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> catalyst was also observed with respect to its binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> counterpart. The choice of A-site metal is of prime importance in the isobutene production, catalyzing mainly the ethanol dehydrogenation, meanwhile the appropriate addition of zinc on the catalyst surface is also essential for good isobutene yield.展开更多
In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were lo...In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were loaded by an incipient wetness impregnation method onto the optimized ZnAl catalyst. It was found that the activity was greatly enhanced by the modification of Na, which depended on the Na content in the catalyst. The methanol conversion was 96% on a 0.1 Na/0.4 ZnAl catalyst (GHSV = 14,040 h<sup>-</sup><sup>1</sup>, S/C = 1.4, 350°C), which was much higher with respect to a Na-free 0.4 ZnAl catalyst (74%). The remarkable improvement of activity was attributed to a weakening of the C-H bonds and clear of hydroxyl group by the Na dopant leading to an accelerated dehydrogenation of the reaction intermediates formed on ZnAl<sub>2</sub>O<sub>4</sub> spinel surface and thus the overall reaction.展开更多
CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemi...CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.展开更多
The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is significantly lowered by the non-wetting heterointerface.The paper investigates the heat...The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is significantly lowered by the non-wetting heterointerface.The paper investigates the heat transport behavior between a 200-nm Cu layer and a single-crystalline diamond substrate inserted by a chromium(Cr)interlayer having a series of thicknesses from 150 nm down to 5 nm.The purpose is to detect the impact of the modifying interlayer thickness on the interfacial thermal conductance(h)between Cu and diamond.The time-domain thermoreflectance measurements suggest that the introduction of Cr interlayer dramatically improves the h between Cu and diamond owing to the enhanced interfacial adhesion and bridged dissimilar phonon states between Cu and diamond.The h value exhibits a decreasing trend as the Cr interlayer becomes thicker because of the increase in thermal resistance of Cr interlayer.The high h values are observed for the Cr interlayer thicknesses below 21 nm since phononic transport channel dominates the thermal conduction in the ultrathin Cr layer.The findings provide a way to tune the thermal conduction across the metal/nonmetal heterogeneous interface,which plays a pivotal role in designing materials and devices for thermal management applications.展开更多
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute...Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications.展开更多
The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced s...The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase展开更多
The outbreak of a novel coronavirus(SARS-CoV-2)has resulted in a worldwide pandemic infecting over 5.9 million people[1].This positive-strand RNA virus can cause severe respiratory distress syndrome in humans(COVID-19...The outbreak of a novel coronavirus(SARS-CoV-2)has resulted in a worldwide pandemic infecting over 5.9 million people[1].This positive-strand RNA virus can cause severe respiratory distress syndrome in humans(COVID-19),with over 364,000 deaths between December 2019 and May 30,2020[1,2].To combat this pandemic,the World Health Organization(WHO)is coordinating global efforts on surveillance,epidemiology,mathematical model-ing,diagnostics,treatment and control,and has issued interim guidance to countries.Nevertheless,this is a difficult situation and the number of cases is rapidly increasing globally.The tempo-ral evolution and the spatial spread of this virus have also raised serious concerns about the future trajectory of this outbreak.展开更多
文摘Ternary multifunctional A<sub>1</sub>Zn<sub>y</sub>Zr<sub>z</sub>O<sub>n</sub> catalysts are prepared by introducing A-site transition metals with the redox capability into binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub>. Structure and morphology were investigated by means of XRD, BET and FESEM, respectively. Activity data showed that Cr addition exhibited obvious beneficial effect to promote isobutene production from direct conversion of bio-ethanol compared to other A-site metal dopants. A significant higher yield of isobutene over Cr-promoted Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> catalyst was also observed with respect to its binary Zn<sub>1</sub>Zr<sub>8</sub>O<sub>n</sub> counterpart. The choice of A-site metal is of prime importance in the isobutene production, catalyzing mainly the ethanol dehydrogenation, meanwhile the appropriate addition of zinc on the catalyst surface is also essential for good isobutene yield.
文摘In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were loaded by an incipient wetness impregnation method onto the optimized ZnAl catalyst. It was found that the activity was greatly enhanced by the modification of Na, which depended on the Na content in the catalyst. The methanol conversion was 96% on a 0.1 Na/0.4 ZnAl catalyst (GHSV = 14,040 h<sup>-</sup><sup>1</sup>, S/C = 1.4, 350°C), which was much higher with respect to a Na-free 0.4 ZnAl catalyst (74%). The remarkable improvement of activity was attributed to a weakening of the C-H bonds and clear of hydroxyl group by the Na dopant leading to an accelerated dehydrogenation of the reaction intermediates formed on ZnAl<sub>2</sub>O<sub>4</sub> spinel surface and thus the overall reaction.
基金jointly supported by the National Key Research and Development Program of China(No.2019YFC1804304)the National Natural Science Foundation of China(Nos.2167212,41772254)。
文摘CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.
基金financially supported by the National Natural Science Foundation of China (Nos. 51871014, 51571015)the National Youth Science Foundation, China (No. 51606193)
文摘The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is significantly lowered by the non-wetting heterointerface.The paper investigates the heat transport behavior between a 200-nm Cu layer and a single-crystalline diamond substrate inserted by a chromium(Cr)interlayer having a series of thicknesses from 150 nm down to 5 nm.The purpose is to detect the impact of the modifying interlayer thickness on the interfacial thermal conductance(h)between Cu and diamond.The time-domain thermoreflectance measurements suggest that the introduction of Cr interlayer dramatically improves the h between Cu and diamond owing to the enhanced interfacial adhesion and bridged dissimilar phonon states between Cu and diamond.The h value exhibits a decreasing trend as the Cr interlayer becomes thicker because of the increase in thermal resistance of Cr interlayer.The high h values are observed for the Cr interlayer thicknesses below 21 nm since phononic transport channel dominates the thermal conduction in the ultrathin Cr layer.The findings provide a way to tune the thermal conduction across the metal/nonmetal heterogeneous interface,which plays a pivotal role in designing materials and devices for thermal management applications.
基金National Natural Science Foundation of China(No.41801379)Fundamental Research Funds for the Central Universities(No.2019B08414)National Key R&D Program of China(No.2016YFC0401801)。
文摘Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications.
文摘The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase
基金jointly supported by the National Natural Science Foundation of China (41521004)the Gansu Provincial Special Fund Project for Guiding Scientific and Technological Innovation and Development (2019ZX-06)。
文摘The outbreak of a novel coronavirus(SARS-CoV-2)has resulted in a worldwide pandemic infecting over 5.9 million people[1].This positive-strand RNA virus can cause severe respiratory distress syndrome in humans(COVID-19),with over 364,000 deaths between December 2019 and May 30,2020[1,2].To combat this pandemic,the World Health Organization(WHO)is coordinating global efforts on surveillance,epidemiology,mathematical model-ing,diagnostics,treatment and control,and has issued interim guidance to countries.Nevertheless,this is a difficult situation and the number of cases is rapidly increasing globally.The tempo-ral evolution and the spatial spread of this virus have also raised serious concerns about the future trajectory of this outbreak.