As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable band...As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable bandgap,high carrier mobility,and excellent air stability.Although 2D MoSe_(2)-based photodetectors have been reported to exhibit admired performance,the large-area 2D MoSe_(2)layers are difficult to be achieved via conventional synthesis methods,which severely impedes its future applications.Here,we present the controllable growth of large-area 2D MoSe_(2)layers over 3.5-inch with excellent homogeneity by a simple post-selenization route.Further,a high-quality n-MoSe_(2)/p-Si van der Waals(vdW)heterojunction device is in-situ fabricated by directly growing 2D n-MoSe_(2)layers on the patterned p-Si substrate,which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W^(−1),a high specific detectivity of 10^(13) Jones,and a fast response time to follow nanosecond pulsed optical signal.In addition,thanks to the inch-level 2D MoSe_(2)layers,a 4×4 integrated heterojunction device array is achieved,which has demonstrated good uniformity and satisfying imaging capability.The large-area 2D MoSe_(2)layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.展开更多
Two-dimensional(2D)layered materials have been considered promising candidates for next-generation optoelectronics.However,the performance of 2D photodetectors still has much room for improvement due to weak light abs...Two-dimensional(2D)layered materials have been considered promising candidates for next-generation optoelectronics.However,the performance of 2D photodetectors still has much room for improvement due to weak light absorption of planar 2D materials and lack of high-quality heterojunction preparation technology.Notably,2D materials integrating with mature bulk semiconductors are a promising pathway to overcome this limitation and promote the practical application on optoelectronics.In this work,we present the patterned assembly of MoSe_(2)/pyramid Si mixed-dimensional van der Waals(vdW)heterojunction arrays for broadband photodetection and imaging.Benefited from the light trapping effect induced enhanced optical absorption and high-quality vdW heterojunction,the photodetector demonstrates a wide spectral response range from 265 to 1550 nm,large responsivity up to 0.67 A·W^(-1),high specific detectivity of 1.84×10^(13)Jones,and ultrafast response time of 0.34/5.6μs at 0 V.Moreover,the photodetector array exhibits outstanding broadband image sensing capability.This study offers a novel development route for high-performance and broadband photodetector array by MoSe_(2)/pyramid Si mixed-dimensional heterojunction.展开更多
基金This work was financially supported by the National Key R&D Program of China(No.2022YFB2803900)the National Natural Science Foundation of China(Nos.U2004165,U22A20138,and 11974016)+1 种基金the Natural Science Foundation of Henan Province,China(No.202300410376)Key Research and Development Program(social development)of Jiangsu Province(No.BE2021667).
文摘As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable bandgap,high carrier mobility,and excellent air stability.Although 2D MoSe_(2)-based photodetectors have been reported to exhibit admired performance,the large-area 2D MoSe_(2)layers are difficult to be achieved via conventional synthesis methods,which severely impedes its future applications.Here,we present the controllable growth of large-area 2D MoSe_(2)layers over 3.5-inch with excellent homogeneity by a simple post-selenization route.Further,a high-quality n-MoSe_(2)/p-Si van der Waals(vdW)heterojunction device is in-situ fabricated by directly growing 2D n-MoSe_(2)layers on the patterned p-Si substrate,which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W^(−1),a high specific detectivity of 10^(13) Jones,and a fast response time to follow nanosecond pulsed optical signal.In addition,thanks to the inch-level 2D MoSe_(2)layers,a 4×4 integrated heterojunction device array is achieved,which has demonstrated good uniformity and satisfying imaging capability.The large-area 2D MoSe_(2)layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.U2004165,U22A20138,and 11974016)the Natural Science Foundation of Henan Province,China(No.202300410376)+1 种基金Henan Provincial Key Science and Technology Research Projects(No.212102210131)the Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials(No.HKDNM2021012).
文摘Two-dimensional(2D)layered materials have been considered promising candidates for next-generation optoelectronics.However,the performance of 2D photodetectors still has much room for improvement due to weak light absorption of planar 2D materials and lack of high-quality heterojunction preparation technology.Notably,2D materials integrating with mature bulk semiconductors are a promising pathway to overcome this limitation and promote the practical application on optoelectronics.In this work,we present the patterned assembly of MoSe_(2)/pyramid Si mixed-dimensional van der Waals(vdW)heterojunction arrays for broadband photodetection and imaging.Benefited from the light trapping effect induced enhanced optical absorption and high-quality vdW heterojunction,the photodetector demonstrates a wide spectral response range from 265 to 1550 nm,large responsivity up to 0.67 A·W^(-1),high specific detectivity of 1.84×10^(13)Jones,and ultrafast response time of 0.34/5.6μs at 0 V.Moreover,the photodetector array exhibits outstanding broadband image sensing capability.This study offers a novel development route for high-performance and broadband photodetector array by MoSe_(2)/pyramid Si mixed-dimensional heterojunction.