Celecoxib,a cyclooxygenase-2 inhibitor,can enhance the efficacy of chemotherapy;however,its effect seems inconsistent.In this study,we investigated whether celecoxib would increase the antiproliferative effects of cis...Celecoxib,a cyclooxygenase-2 inhibitor,can enhance the efficacy of chemotherapy;however,its effect seems inconsistent.In this study,we investigated whether celecoxib would increase the antiproliferative effects of cisplatin in human lung cancer cells.Our data demonstrated the synergistic effects of celecoxib with cisplatin in wild-type p53 cells and their antagonistic effects inmutated or deleted p53 cells.Combination indices of 0.82 to 0.93 reflected a synergistic effect between celecoxib and cisplatin in lung cancer cells with wild-type p53.Combination indices of 1.63 to 3.00 reflected antagonism between celecoxib and cisplatin in lung cancer cells with mutated or deleted p53.Compared with that in cells with mutated or deleted p53,apoptosis significantly increased with the addition of celecoxib and cisplatin in wild-type p53 cells(P<0.05).Moreover,the results in vivo were similar to those in vitro:celecoxib combinedwith cisplatin slowed tumor growth in wild-type p53 groups and not in mutated or deleted p53 groups.In addition,celecoxib promoted p53 translocation into the nucleus and upregulated active p53 expression in wild-type p53 cells.Celecoxib combined with cisplatin upregulated PUMA(PUMA is a downstream gene of p53)after active p53 increased in wild-type p53 cells.In summary,the combination of celecoxib and cisplatin demonstrates clear synergistic effects in wild-type p53 cells and antagonistic effects inmutated or deleted p53 cells.The synergistic effect was achieved by apoptosis,induced by upregulating PUMA.Our results will provide a new treatment strategy for patients carrying wild-type p53,insensitive to cisplatin.展开更多
Background: Small cell lung cancer (SCLC) is a highly aggressive disease characterized by early metastasis. Ane- uploid CD31- disseminated tumor cells (DTCs) and CD31+ disseminated tumor endothelial cells (DTECs) resi...Background: Small cell lung cancer (SCLC) is a highly aggressive disease characterized by early metastasis. Ane- uploid CD31- disseminated tumor cells (DTCs) and CD31+ disseminated tumor endothelial cells (DTECs) residing in the bone marrow are generally considered as the initiators of metastatic process. However, the clinical signifi- cance of DTCs and DTECs in SCLC remains poorly understood. The aim of this study is to investigate the clinical implications of diverse subtypes of highly heterogeneous DTCs and DTECs in SCLC patients. Methods: Subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) was applied to enrich and perform comprehensive morphologic, karyotypic, and phenotypic characterization of aneuploid DTCs and DTECs in 30 patients. Additionally, co-detection of circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) was conducted on 24 of the enrolled patients. Proof-of-concept of the whole exon sequencings (WES) on precisely selected different subtypes of CTCs or DTCs, longitudinally detected from a representative case with pathologically confirmed bone marrow metastasis, was validated to feasibly reveal genetic mutations in these cells. Results: DTCs, DTECs and their subtypes were readily detectable in SCLC patients. Comparative analysis re- vealed that the number of DTCs and DTECs was significantly higher than that of their corresponding CTCs and CTECs ( P < 0.001 for both). Positive detection of disseminated tumor microemboli (DTM) or disseminated tumor endothelial microemboli (DTEM) was associated with inferior survival outcomes ( P = 0.046 and P = 0.048). Pa- tients with EpCAM+ DTCs detectable displayed significantly lower disease control rate (DCR) (16.67% vs 73.33%, P = 0.019), reduced median progression-free survival (mPFS) and median overall survival (mOS) compared with those with EpCAM- DTCs ( P = 0.028 and P = 0.002, respectively). WES analysis indicated that post-treatment DTCs isolated from bone marrow at the time of disease progression shared more homologous somatic gene mu- tations with pre-treatment CTCs compared with post-treatment CTCs. Conclusions: Our findings suggest that bone marrow sampling and characterization of DTC subtypes provided a valuable tool for predicting treatment response and the prognosis in SCLC. Moreover, DTCs inherit a greater amount of homologous somatic information from pre-treatment CTCs, indicating their potential role in disease progression and treatment resistance.展开更多
基金the Beijing Municipal Science and Technology Commission(grant Z211100002921013)the Tongzhou District Science and Technology Committee Project to Tongzhou(grant KJ2020CX010).
文摘Celecoxib,a cyclooxygenase-2 inhibitor,can enhance the efficacy of chemotherapy;however,its effect seems inconsistent.In this study,we investigated whether celecoxib would increase the antiproliferative effects of cisplatin in human lung cancer cells.Our data demonstrated the synergistic effects of celecoxib with cisplatin in wild-type p53 cells and their antagonistic effects inmutated or deleted p53 cells.Combination indices of 0.82 to 0.93 reflected a synergistic effect between celecoxib and cisplatin in lung cancer cells with wild-type p53.Combination indices of 1.63 to 3.00 reflected antagonism between celecoxib and cisplatin in lung cancer cells with mutated or deleted p53.Compared with that in cells with mutated or deleted p53,apoptosis significantly increased with the addition of celecoxib and cisplatin in wild-type p53 cells(P<0.05).Moreover,the results in vivo were similar to those in vitro:celecoxib combinedwith cisplatin slowed tumor growth in wild-type p53 groups and not in mutated or deleted p53 groups.In addition,celecoxib promoted p53 translocation into the nucleus and upregulated active p53 expression in wild-type p53 cells.Celecoxib combined with cisplatin upregulated PUMA(PUMA is a downstream gene of p53)after active p53 increased in wild-type p53 cells.In summary,the combination of celecoxib and cisplatin demonstrates clear synergistic effects in wild-type p53 cells and antagonistic effects inmutated or deleted p53 cells.The synergistic effect was achieved by apoptosis,induced by upregulating PUMA.Our results will provide a new treatment strategy for patients carrying wild-type p53,insensitive to cisplatin.
基金Beijing Municipal Science and Technol-ogy Commission(grant number Z211100002921013)Tongzhou Liang-gao Talents Project(grant number YH201920)+2 种基金Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research In-stitutes(grant number JYY2024-14)Beijing Municipal Public Wel-fare Development and Reform Pilot Project for Medical Research Insti-tutes(grant number JYY2023-15)We thank all participants and their families for supporting this study.
文摘Background: Small cell lung cancer (SCLC) is a highly aggressive disease characterized by early metastasis. Ane- uploid CD31- disseminated tumor cells (DTCs) and CD31+ disseminated tumor endothelial cells (DTECs) residing in the bone marrow are generally considered as the initiators of metastatic process. However, the clinical signifi- cance of DTCs and DTECs in SCLC remains poorly understood. The aim of this study is to investigate the clinical implications of diverse subtypes of highly heterogeneous DTCs and DTECs in SCLC patients. Methods: Subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) was applied to enrich and perform comprehensive morphologic, karyotypic, and phenotypic characterization of aneuploid DTCs and DTECs in 30 patients. Additionally, co-detection of circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) was conducted on 24 of the enrolled patients. Proof-of-concept of the whole exon sequencings (WES) on precisely selected different subtypes of CTCs or DTCs, longitudinally detected from a representative case with pathologically confirmed bone marrow metastasis, was validated to feasibly reveal genetic mutations in these cells. Results: DTCs, DTECs and their subtypes were readily detectable in SCLC patients. Comparative analysis re- vealed that the number of DTCs and DTECs was significantly higher than that of their corresponding CTCs and CTECs ( P < 0.001 for both). Positive detection of disseminated tumor microemboli (DTM) or disseminated tumor endothelial microemboli (DTEM) was associated with inferior survival outcomes ( P = 0.046 and P = 0.048). Pa- tients with EpCAM+ DTCs detectable displayed significantly lower disease control rate (DCR) (16.67% vs 73.33%, P = 0.019), reduced median progression-free survival (mPFS) and median overall survival (mOS) compared with those with EpCAM- DTCs ( P = 0.028 and P = 0.002, respectively). WES analysis indicated that post-treatment DTCs isolated from bone marrow at the time of disease progression shared more homologous somatic gene mu- tations with pre-treatment CTCs compared with post-treatment CTCs. Conclusions: Our findings suggest that bone marrow sampling and characterization of DTC subtypes provided a valuable tool for predicting treatment response and the prognosis in SCLC. Moreover, DTCs inherit a greater amount of homologous somatic information from pre-treatment CTCs, indicating their potential role in disease progression and treatment resistance.