A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears ...A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears to consist of a thin and cracked coating with a scattering of spherical particles.The corrosion behavior of the substrate and conversion coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).Compared with AZ31B magnesium alloy,the corrosion current density of the conversion coating is decreased by two orders of magnitude.The total impedance of the V/Ce conversion coating rise to 1.6×10^(3)Ω·cm^(2)in contrast with2.2×10^(2)Ω·cm^(2)of the bare AZ31B.In addition,the electrical conductivity of the coating was assessed by conductivity meter and Mott-Schottky measurement.The results reveal a high dependence of the conductivity of the coating on the semiconductor properties of the phase compositions.展开更多
The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base edit...The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.展开更多
Base editing, as an expanded clustered regularly interspaced short palindromic repeats(CRISPR)-Cas genome editing strategy, permits precise and irreversible nucleotide conversion. SaKKH, an efficient variant of a Cas9...Base editing, as an expanded clustered regularly interspaced short palindromic repeats(CRISPR)-Cas genome editing strategy, permits precise and irreversible nucleotide conversion. SaKKH, an efficient variant of a Cas9 ortholog from Staphylococcus aureus(SaCas9), is important in genome editing because it can edit sites with HHHAAT protospacer adjacent motif(PAM) that the canonical Streptococcus pyogenes Cas9(SpCas9) or its variants(e.g. xCas9, Cas9-NG) cannot. However, several technical parameters of SaKKH involved base editors have not been well defined and this uncertainty limits their application. We developed an effective multiplex cytosine base editor(SaKKHn-pBE) and showed that it recognized NNARRT, NNCRRT, NNGRGT, and NNTRGT PAMs. Based on 27 targets tested, we defined technical parameters of SaKKHn-pBE including the editing window, the preferred sequence context, and the mutation type. The editing efficiency was further improved by modification of the SaKKH sgRNA. These advances can be applied in future research and molecular breeding in rice and other plants.展开更多
Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits.In this study,we tested the PRIME-Del(PDel)strategy using a pair of p...Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits.In this study,we tested the PRIME-Del(PDel)strategy using a pair of prime editing guide RNAs(pegRNAs)that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8%for 60 bp fragment deletions at six endogenous targets.Moreover,as high as 84.2%precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants.To add the bases that were unintentionally deleted between the two nicking sequences,we used the PDel/Syn strategy,which introduced multiple synonymous base mutations in the region that had to be patched in the RT template.The PDel/Syn strategy achieved an average of 58.1%deletion efficiency at six endogenous targets,which was higher than the PDel strategy.The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants.展开更多
Prime editing(PE)is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms.However,no PE systems have been shown to induce herit...Prime editing(PE)is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms.However,no PE systems have been shown to induce heritable mutations in tobacco,nor in any other dicot.In this study,we generated an efficient PE system in tobacco that not only introduced heritable mutations,but also enabled anthocyanin-based reporter selection of transgene-free T_(1) plants.This system was used to confer Zabienol biosynthesis in the allotetraploid tobacco cultivar HHDJY by restoring a G>T conversion in the NtCPS2 gene.High levels of Z-abienol were detected in the leaves of homozygous T_(1) plants at two weeks after topping.This study describes an advance in PE systems and expands genome-editing toolbox in tobacco,even in dicots,for use in basic research and molecular breeding.And restoring biosynthesis of Z-abienol in tobacco might provide an efficient way to obtain Z-abienol in plants.展开更多
The development of CRISPR/Cas9-mediated base editing has made genomic modification more efficient. However, selection of genetically modified cells from millions of treated cells, especially plant cells, is still chal...The development of CRISPR/Cas9-mediated base editing has made genomic modification more efficient. However, selection of genetically modified cells from millions of treated cells, especially plant cells, is still challenging. In this study, an efficient surrogate reporter system based on a defective hygromycin resistance gene was established in rice to enrich base-edited cells. After step-by-step optimization, the Discriminated sgRNAs-based SurroGate system (DisSUGs) was established by artificially differentiating the editing abilities of a wild-type single guide RNA (sgRNA) targeting the surrogate reporter gene and an enhanced sgRNA targeting endogenous sites. The DisSUGs enhanced the efficiency of screening base-edited cells by 3- to 5-fold for a PmCDA1-based cytosine-to-tyrosine base editor (PCBE), and 2.5- to 6.5-fold for an adenine base editor (ABE) at endogenous targets. These targets showed editing efficiencies of <25% in the conventional systems. The DisSUGs greatly enhanced the frequency of homozygous substitutions and expanded the activity window slightly for both a PCBE and an ABE. Analyses of the total number of single-nucleotide variants from whole-genome sequencing revealed that, compared with the no-enrichment PCBE strategy, the DisSUGs did not alter the frequency of genome-wide sgRNA-independent off-target mutations, but slightly increased the frequency of target-dependent off-target mutations. Collectively, the DisSUGs developed in this study greatly enhances the efficiency of screening plant base-edited cells and will be a useful system in future applications.展开更多
Dear Editor,Base editors(BEs)based on the CRISPR/Cas9 system,including cytosine base editors and adenine base editors,which can efficiently perform four transition mutations(C·G-to-T·A and A·T-to-G·...Dear Editor,Base editors(BEs)based on the CRISPR/Cas9 system,including cytosine base editors and adenine base editors,which can efficiently perform four transition mutations(C·G-to-T·A and A·T-to-G·C),have been well studied and widely used to produce base mutations in a variety of organisms,including in plants such as rice.展开更多
Dear Editor,Base editors(BEs),including cytosine base editor(CBE)and adenine base editor(ABE),have been widely used to generate irreversible nucleotide substitution in plants and animals.However,their wide application...Dear Editor,Base editors(BEs),including cytosine base editor(CBE)and adenine base editor(ABE),have been widely used to generate irreversible nucleotide substitution in plants and animals.However,their wide applications are largely hindered by the strict NG protospacer adjacent motif(PAM)sequences recognized by Streptococcus pyogenes Cas9(SpCas9)and its engineered variants,such as SpCas9-NG and xCas9(Hua et al.,2019;Ren et al.,2019;Wu et al.,2019;Zhong et al.,2019;Zhang et al.,2020).Most recently,it was reported that three new SpCas9 variants,SpCas9-NRRH,SpCas9-NRTH,and SpCas9-NRCH,could recognize non-G PAMs(NRNH,where R is A or G and H is A,C,or T)in human cells(Miller et al.,2020).Meanwhile,SPRY,another new SpCas9 variant,was developed to greatly expand the editing scope of BEs to nearly PAMless(Walton et al.,2020).In this study,we generated a series of efficient BE toolkits and almost achieved C-to-T mutation without PAM restriction except for NTG PAM,and largely expanded A-to-G mutation scope in stable transformed rice,providing a reference for application in other plants.展开更多
The yield and quality of tomatoes(Solanum lycopersicum)is seriously affected by Phytophthora infestans.The long non-coding RNA(lnc RNA)Sl-lnc RNA39896 is induced after P.infestans infection and was previously predicte...The yield and quality of tomatoes(Solanum lycopersicum)is seriously affected by Phytophthora infestans.The long non-coding RNA(lnc RNA)Sl-lnc RNA39896 is induced after P.infestans infection and was previously predicted to act as an endogenous target mimic(eTM)for the micro RNA Sl-miR166b,which function in stress responses.Here,we further examined the role of Sl-lncRNA39896 and Sl-mi R166b in tomato resistance to P.infestans.Sl-miR166b levels were higher in Sl-lnc RNA39896-knockout mutants than in wild-type plants,and the mutants displayed enhanced resistance to P.infestans.A six-point mutation in the region of Sl-lncRNA39896 that binds to Sl-miR166b disabled the interaction,suggesting that Sl-lnc RNA39896 acts as an e TM for Sl-mi R166b.Overexpressing Sl-miR166b yielded a similar phenotype to that produced by Sl-lncRNA39896-knockout,whereas silencing of Sl-mi R166b impaired resistance.We verified that Sl-miR166b cleaved transcripts of its target classⅢhomeodomain-leucine zipper genes Sl HDZ34and Sl HDZ45.Silencing of Sl HDZ34/45 decreased pathogen accumulation in plants infected with P.infestans.Additionally,jasmonic acid and ethylene contents were elevated following infection in the plants with enhanced resistance.Sl-lnc RNA39896is the first known lnc RNA to negatively regulate resistance to P.infestans in tomato.We propose a novel mechanism in which the lnc RNA39896–mi R166b–HDZ module modulates resistance to P.infestans.展开更多
基金financially supported by the National Key Research and Development Program of China (Nos. 2016YFB0301105 and 2017YFB0702100)。
文摘A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears to consist of a thin and cracked coating with a scattering of spherical particles.The corrosion behavior of the substrate and conversion coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).Compared with AZ31B magnesium alloy,the corrosion current density of the conversion coating is decreased by two orders of magnitude.The total impedance of the V/Ce conversion coating rise to 1.6×10^(3)Ω·cm^(2)in contrast with2.2×10^(2)Ω·cm^(2)of the bare AZ31B.In addition,the electrical conductivity of the coating was assessed by conductivity meter and Mott-Schottky measurement.The results reveal a high dependence of the conductivity of the coating on the semiconductor properties of the phase compositions.
基金supported by the Beijing Scholars Program[BSP041]。
文摘The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.
基金supported by the Beijing Scholars Program[BSP041]。
文摘Base editing, as an expanded clustered regularly interspaced short palindromic repeats(CRISPR)-Cas genome editing strategy, permits precise and irreversible nucleotide conversion. SaKKH, an efficient variant of a Cas9 ortholog from Staphylococcus aureus(SaCas9), is important in genome editing because it can edit sites with HHHAAT protospacer adjacent motif(PAM) that the canonical Streptococcus pyogenes Cas9(SpCas9) or its variants(e.g. xCas9, Cas9-NG) cannot. However, several technical parameters of SaKKH involved base editors have not been well defined and this uncertainty limits their application. We developed an effective multiplex cytosine base editor(SaKKHn-pBE) and showed that it recognized NNARRT, NNCRRT, NNGRGT, and NNTRGT PAMs. Based on 27 targets tested, we defined technical parameters of SaKKHn-pBE including the editing window, the preferred sequence context, and the mutation type. The editing efficiency was further improved by modification of the SaKKH sgRNA. These advances can be applied in future research and molecular breeding in rice and other plants.
基金supported by the Beijing Scholars Program(BSP041)Innovation Capabilities Construction Project of BAAFS(KJCX20210410)Postdoctoral fund of BAAFS(2023-ZZ-016)and Utility Fund of BAAFS.
文摘Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits.In this study,we tested the PRIME-Del(PDel)strategy using a pair of prime editing guide RNAs(pegRNAs)that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8%for 60 bp fragment deletions at six endogenous targets.Moreover,as high as 84.2%precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants.To add the bases that were unintentionally deleted between the two nicking sequences,we used the PDel/Syn strategy,which introduced multiple synonymous base mutations in the region that had to be patched in the RT template.The PDel/Syn strategy achieved an average of 58.1%deletion efficiency at six endogenous targets,which was higher than the PDel strategy.The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants.
基金supported by Beijing Scholars Program (BSP041)Financial Special Fund of Beijing Academy of Agriculture and Forestry Sciences (CZZJ202206)+1 种基金the key projects of YNZY (2022JY02)CNTC (110202101034,JY-11)。
文摘Prime editing(PE)is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms.However,no PE systems have been shown to induce heritable mutations in tobacco,nor in any other dicot.In this study,we generated an efficient PE system in tobacco that not only introduced heritable mutations,but also enabled anthocyanin-based reporter selection of transgene-free T_(1) plants.This system was used to confer Zabienol biosynthesis in the allotetraploid tobacco cultivar HHDJY by restoring a G>T conversion in the NtCPS2 gene.High levels of Z-abienol were detected in the leaves of homozygous T_(1) plants at two weeks after topping.This study describes an advance in PE systems and expands genome-editing toolbox in tobacco,even in dicots,for use in basic research and molecular breeding.And restoring biosynthesis of Z-abienol in tobacco might provide an efficient way to obtain Z-abienol in plants.
基金This work was supported by Beijing Academy of Agriculture&Forestry Scien ces,Beijing,ChinaThe funding in eluded Innovative Team Con-struction Project of BAAFS(JNKYT201603)the Beijing Scholars Program(BSP041).
文摘The development of CRISPR/Cas9-mediated base editing has made genomic modification more efficient. However, selection of genetically modified cells from millions of treated cells, especially plant cells, is still challenging. In this study, an efficient surrogate reporter system based on a defective hygromycin resistance gene was established in rice to enrich base-edited cells. After step-by-step optimization, the Discriminated sgRNAs-based SurroGate system (DisSUGs) was established by artificially differentiating the editing abilities of a wild-type single guide RNA (sgRNA) targeting the surrogate reporter gene and an enhanced sgRNA targeting endogenous sites. The DisSUGs enhanced the efficiency of screening base-edited cells by 3- to 5-fold for a PmCDA1-based cytosine-to-tyrosine base editor (PCBE), and 2.5- to 6.5-fold for an adenine base editor (ABE) at endogenous targets. These targets showed editing efficiencies of <25% in the conventional systems. The DisSUGs greatly enhanced the frequency of homozygous substitutions and expanded the activity window slightly for both a PCBE and an ABE. Analyses of the total number of single-nucleotide variants from whole-genome sequencing revealed that, compared with the no-enrichment PCBE strategy, the DisSUGs did not alter the frequency of genome-wide sgRNA-independent off-target mutations, but slightly increased the frequency of target-dependent off-target mutations. Collectively, the DisSUGs developed in this study greatly enhances the efficiency of screening plant base-edited cells and will be a useful system in future applications.
文摘Dear Editor,Base editors(BEs)based on the CRISPR/Cas9 system,including cytosine base editors and adenine base editors,which can efficiently perform four transition mutations(C·G-to-T·A and A·T-to-G·C),have been well studied and widely used to produce base mutations in a variety of organisms,including in plants such as rice.
基金This work was supported by Beijing Academy of Agriculture&Forestry SciencesThe funding included Beijing Municipal Natural Science Foundation(6204041)the Beijing Scholars Program(BSP041).
文摘Dear Editor,Base editors(BEs),including cytosine base editor(CBE)and adenine base editor(ABE),have been widely used to generate irreversible nucleotide substitution in plants and animals.However,their wide applications are largely hindered by the strict NG protospacer adjacent motif(PAM)sequences recognized by Streptococcus pyogenes Cas9(SpCas9)and its engineered variants,such as SpCas9-NG and xCas9(Hua et al.,2019;Ren et al.,2019;Wu et al.,2019;Zhong et al.,2019;Zhang et al.,2020).Most recently,it was reported that three new SpCas9 variants,SpCas9-NRRH,SpCas9-NRTH,and SpCas9-NRCH,could recognize non-G PAMs(NRNH,where R is A or G and H is A,C,or T)in human cells(Miller et al.,2020).Meanwhile,SPRY,another new SpCas9 variant,was developed to greatly expand the editing scope of BEs to nearly PAMless(Walton et al.,2020).In this study,we generated a series of efficient BE toolkits and almost achieved C-to-T mutation without PAM restriction except for NTG PAM,and largely expanded A-to-G mutation scope in stable transformed rice,providing a reference for application in other plants.
基金provided by the National Natural Science Foundation of China (No. 32072592, 31872116 and 61872055)
文摘The yield and quality of tomatoes(Solanum lycopersicum)is seriously affected by Phytophthora infestans.The long non-coding RNA(lnc RNA)Sl-lnc RNA39896 is induced after P.infestans infection and was previously predicted to act as an endogenous target mimic(eTM)for the micro RNA Sl-miR166b,which function in stress responses.Here,we further examined the role of Sl-lncRNA39896 and Sl-mi R166b in tomato resistance to P.infestans.Sl-miR166b levels were higher in Sl-lnc RNA39896-knockout mutants than in wild-type plants,and the mutants displayed enhanced resistance to P.infestans.A six-point mutation in the region of Sl-lncRNA39896 that binds to Sl-miR166b disabled the interaction,suggesting that Sl-lnc RNA39896 acts as an e TM for Sl-mi R166b.Overexpressing Sl-miR166b yielded a similar phenotype to that produced by Sl-lncRNA39896-knockout,whereas silencing of Sl-mi R166b impaired resistance.We verified that Sl-miR166b cleaved transcripts of its target classⅢhomeodomain-leucine zipper genes Sl HDZ34and Sl HDZ45.Silencing of Sl HDZ34/45 decreased pathogen accumulation in plants infected with P.infestans.Additionally,jasmonic acid and ethylene contents were elevated following infection in the plants with enhanced resistance.Sl-lnc RNA39896is the first known lnc RNA to negatively regulate resistance to P.infestans in tomato.We propose a novel mechanism in which the lnc RNA39896–mi R166b–HDZ module modulates resistance to P.infestans.