TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system w...TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system with martensitic transformations(MT) is still lacking.In this work,we focused on the electronic transport behavior of three phases in Ni_(50-x)Fe_xTi_(50)across the MT.A phase diagram of Ni_(50-x)Fe_xTi_(50) was established based on x-ray diffraction,calorimetric,magnetic,and electrical measurements.To reveal the driving force of MT,phonon softening was revealed using first-principles calculations.Notably,the transverse and longitudinal transport behavior changed significantly across the phase transition,which can be attributed to the reconstruction of electronic structures.This work promotes the understanding of phase transitions and demonstrates the sensitivity of electron transport to phase transition.展开更多
The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracte...The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.展开更多
The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(G...The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(GC)and the underlying mechanisms.The differentially expressed miRNAs were firstly identified in serum exosomes of GC patients and healthy individuals using next-generation sequencing and bioinformatics.Next,the expression of serum exosomal miR-4256 was analyzed in GC cells and GC tissues,and the role of miR-4256 in GC was investigated by in vitro and in vivo experiments.Then,the effect of miR-4256 on its downstream target genes HDAC5/p16^(INK4a) was studied in GC cells,and the underlying mechanisms were evaluated using dual luciferase reporter assay and Chromatin Immunoprecipitation(ChIP).Additionally,the role of the miR-4256/HDAC5/p16^(INK4a) axis in GC was studied using in vitro and in vivo experiments.Finally,the upstream regulators SMAD2/p300 that regulate miR-4256 expression and their role in GC were explored using in vitro experiments.miR-4256 was the most significantly upregulated miRNA and was overexpressed in GC cell lines and GC tissues;in vitro and in vivo results showed that miR-4256 promoted GC growth and progression.Mechanistically,miR-4256 enhanced HDAC5 expression by targeting the promoter of the HDAC5 gene in GC cells,and then restrained the expression of p16^(INK4a) through the epigenetic modulation of HDAC5 at the p16INK4a promoter.Furthermore,miR-4256 overexpression was positively regulated by the SMAD2/p300 complex in GC cells.Our data indicate that miR-4256 functions as an oncogene in GC via the SMAD2/miR-4256/HDAC5/p16^(INK4a) axis,which participates in GC progression and provides novel therapeutic and prognostic biomarkers for GC.展开更多
Kagome materials have been studied intensively in condensed matter physics.With rich properties,various Kagome materials emerge during this process.Here,we grew single crystals of Y_(0.5)Fe_(3)Sn_(3)and confirmed an Y...Kagome materials have been studied intensively in condensed matter physics.With rich properties,various Kagome materials emerge during this process.Here,we grew single crystals of Y_(0.5)Fe_(3)Sn_(3)and confirmed an YCo_(6)Ge_(6)-type Kagome-lattice structure by detailed crystal structure characterizations.This compound bears an antiferromagnetic ordering at T_(N)= 551 K,and shows a weak ferromagnetism at low temperatures,where an anomalous Hall effect was observed,suggesting the non-zero Berry curvature.With the unstable antiferromagnetic ground state,our systematic investigations make Y_(0.5)Fe_(3)Sn_(3)a potential Kagome compound for Kagome or topological physics.展开更多
Dear Editor,This letter presents an intelligent model predictive control algorithm inspired by biological regulatory mechanism and operational research. In terms of overall architecture, based on biological regulatory...Dear Editor,This letter presents an intelligent model predictive control algorithm inspired by biological regulatory mechanism and operational research. In terms of overall architecture, based on biological regulatory system and operational research theory, priority factor module and central coordination module are innovatively added on the basis structure of heuristic dynamic programming to carry out overall regulation of the system.展开更多
[Objectives]To further study the technology of short-cut flowering branches for Guire No.82 Mango,adjust its harvest time,increase yield and improve fruit quality,and increase the economic benefits of mango production...[Objectives]To further study the technology of short-cut flowering branches for Guire No.82 Mango,adjust its harvest time,increase yield and improve fruit quality,and increase the economic benefits of mango production.[Methods]The experiment of short-cut flowering branches was carried out for Guire No.82 Mango.[Results]At the initial flowering stage and full flowering stage of the primary inflorescence,with short-cut flowering branches and corresponding cultivation techniques,Guire No.82 Mango was easy to extract regenerated inflorescences.Compared with the control group,the flowering period of the regenerated inflorescences was delayed by 30-35 d and 40-50 d,respectively;the harvest time was delayed by 30 and 40 d,respectively;the yield significantly increased by 1.63 times and 2.25 times,respectively;compared with the control group,the number of fruits with embryo increased significantly,which were 1.39 and 2.25 times of the control,respectively;there was no significant difference in the fruit quality at the harvest time.[Conclusions]Short-cut flowering branches at the initial flowering stage and full flowering stage of the primary inflorescence is an effective measure to delay the marketing time of Guire No.82 Mango.展开更多
The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics.Schemes to achieve this have been proposed theoretically,but few can be realized experimental...The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics.Schemes to achieve this have been proposed theoretically,but few can be realized experimentally.Here,combining transverse transport,theoretical calculations,and scanning tunneling microscopy/spectroscopy(STM/S)investigations,we provide an observation that the topological electronic state,accompanied by an emergent magneto-transport phenomenon,was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6.A giant unconventional anomalous Hall effect(UAHE)is found during the magnetization re-orientation from easy axes to hard ones in magnetic field,with a UAHE peak around the low field of 5 kOe.展开更多
基金supported by the State Key Development Program for Basic Research of China(Grant Nos.2019YFA0704900 and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the Synergetic Extreme Condition User Facility(SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003)。
文摘TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system with martensitic transformations(MT) is still lacking.In this work,we focused on the electronic transport behavior of three phases in Ni_(50-x)Fe_xTi_(50)across the MT.A phase diagram of Ni_(50-x)Fe_xTi_(50) was established based on x-ray diffraction,calorimetric,magnetic,and electrical measurements.To reveal the driving force of MT,phonon softening was revealed using first-principles calculations.Notably,the transverse and longitudinal transport behavior changed significantly across the phase transition,which can be attributed to the reconstruction of electronic structures.This work promotes the understanding of phase transitions and demonstrates the sensitivity of electron transport to phase transition.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403400,2019YFA0704900,and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+4 种基金the National Natural Science Foundation of China(Grant Nos.11974394 and 12174426)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)the Synergetic Extreme Condition User Facility(Grant No.SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003).
文摘The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.
基金The studies involving human participants were approved by The First Affiliated Hospital of Jinan University Ethics Committee(KY-2021-095)The participants provided their written informed consent to participate in this study+1 种基金Animalinvolved experimental protocols were compliance with guidelines and licensesapproved by the Laboratory Animal Center of Jinan University(20220225-65).
文摘The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(GC)and the underlying mechanisms.The differentially expressed miRNAs were firstly identified in serum exosomes of GC patients and healthy individuals using next-generation sequencing and bioinformatics.Next,the expression of serum exosomal miR-4256 was analyzed in GC cells and GC tissues,and the role of miR-4256 in GC was investigated by in vitro and in vivo experiments.Then,the effect of miR-4256 on its downstream target genes HDAC5/p16^(INK4a) was studied in GC cells,and the underlying mechanisms were evaluated using dual luciferase reporter assay and Chromatin Immunoprecipitation(ChIP).Additionally,the role of the miR-4256/HDAC5/p16^(INK4a) axis in GC was studied using in vitro and in vivo experiments.Finally,the upstream regulators SMAD2/p300 that regulate miR-4256 expression and their role in GC were explored using in vitro experiments.miR-4256 was the most significantly upregulated miRNA and was overexpressed in GC cell lines and GC tissues;in vitro and in vivo results showed that miR-4256 promoted GC growth and progression.Mechanistically,miR-4256 enhanced HDAC5 expression by targeting the promoter of the HDAC5 gene in GC cells,and then restrained the expression of p16^(INK4a) through the epigenetic modulation of HDAC5 at the p16INK4a promoter.Furthermore,miR-4256 overexpression was positively regulated by the SMAD2/p300 complex in GC cells.Our data indicate that miR-4256 functions as an oncogene in GC via the SMAD2/miR-4256/HDAC5/p16^(INK4a) axis,which participates in GC progression and provides novel therapeutic and prognostic biomarkers for GC.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1403400,2022YFA1403800,and 2019YFA0704900)the Fundamental Science Center of the National Natural Science Foundation of China (Grant No.52088101)+5 种基金the Beijing Natural Science Foundation (Grant No.Z190009)the National Natural Science Foundation of China (Grant Nos.11974394,1217442651271038)the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (CAS)(Grant No.XDB33000000)the Key Research Program of CAS(Grant No.ZDRW-CN-2021-3)the Scientific Instrument Developing Project of CAS (Grant No.ZDKYYQ20210003)。
文摘Kagome materials have been studied intensively in condensed matter physics.With rich properties,various Kagome materials emerge during this process.Here,we grew single crystals of Y_(0.5)Fe_(3)Sn_(3)and confirmed an YCo_(6)Ge_(6)-type Kagome-lattice structure by detailed crystal structure characterizations.This compound bears an antiferromagnetic ordering at T_(N)= 551 K,and shows a weak ferromagnetism at low temperatures,where an anomalous Hall effect was observed,suggesting the non-zero Berry curvature.With the unstable antiferromagnetic ground state,our systematic investigations make Y_(0.5)Fe_(3)Sn_(3)a potential Kagome compound for Kagome or topological physics.
基金supported by the National Natural Science Foundation of China (U21A20483)。
文摘Dear Editor,This letter presents an intelligent model predictive control algorithm inspired by biological regulatory mechanism and operational research. In terms of overall architecture, based on biological regulatory system and operational research theory, priority factor module and central coordination module are innovatively added on the basis structure of heuristic dynamic programming to carry out overall regulation of the system.
基金Supported by Project of Guangxi Science and Technology Program"Demonstration and Extension of Technology for Postponing Harvest time of Mango"(Gui Ke AB17292084)Agricultural Technology Research Project of Baise City。
文摘[Objectives]To further study the technology of short-cut flowering branches for Guire No.82 Mango,adjust its harvest time,increase yield and improve fruit quality,and increase the economic benefits of mango production.[Methods]The experiment of short-cut flowering branches was carried out for Guire No.82 Mango.[Results]At the initial flowering stage and full flowering stage of the primary inflorescence,with short-cut flowering branches and corresponding cultivation techniques,Guire No.82 Mango was easy to extract regenerated inflorescences.Compared with the control group,the flowering period of the regenerated inflorescences was delayed by 30-35 d and 40-50 d,respectively;the harvest time was delayed by 30 and 40 d,respectively;the yield significantly increased by 1.63 times and 2.25 times,respectively;compared with the control group,the number of fruits with embryo increased significantly,which were 1.39 and 2.25 times of the control,respectively;there was no significant difference in the fruit quality at the harvest time.[Conclusions]Short-cut flowering branches at the initial flowering stage and full flowering stage of the primary inflorescence is an effective measure to delay the marketing time of Guire No.82 Mango.
基金supported by the National Key R&D Program of China(nos.2022YFA1403800,2022YFA1403400,2019YFA0704900)the Fundamental Science Center of the National Natural Science Foundation of China(no.52088101)+7 种基金the Synergetic Extreme Condition User Facility(SECUF)the Beijing Natural Science Foundation(no.Z190009)the National Natural Science Foundation of China(nos.11974394,12174426,12104280,and 12004416)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(XDB33000000)the Key Research Program of CAS(no.ZDRW-CN-2021-3)the CAS Project for Young Scientists in Basic Research(YSBR-003)the Scientific Instrument Developing Project of CAS(no.ZDKYYQ20210003)the Basic Research Plan of Shanxi Province(no.20210302124160).
文摘The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics.Schemes to achieve this have been proposed theoretically,but few can be realized experimentally.Here,combining transverse transport,theoretical calculations,and scanning tunneling microscopy/spectroscopy(STM/S)investigations,we provide an observation that the topological electronic state,accompanied by an emergent magneto-transport phenomenon,was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6.A giant unconventional anomalous Hall effect(UAHE)is found during the magnetization re-orientation from easy axes to hard ones in magnetic field,with a UAHE peak around the low field of 5 kOe.