These days,cancer is thought to be more than just one illness,with several complex subtypes that require different screening approaches.These subtypes can be distinguished by the distinct markings left by metabolites,...These days,cancer is thought to be more than just one illness,with several complex subtypes that require different screening approaches.These subtypes can be distinguished by the distinct markings left by metabolites,proteins,miRNA,and DNA.Personalized illness management may be possible if cancer is categorized according to its biomarkers.In order to stop cancer from spreading and posing a significant risk to patient survival,early detection and prompt treatment are essential.Traditional cancer screening techniques are tedious,time-consuming,and require expert personnel for analysis.This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results.Using time and money saving techniques,these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity.With its proven potential for biomedical use,surface-enhanced Raman scattering(SERS)has been widely used in biosensing applications,particularly in biomarker identification.Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool.The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article,along with sample preparation techniques and obstacles.Aside from these significant constraints in the detection approach and techniques,the review also takes into account the complexity of biological fluids,the availability of biomarkers,and their sensitivity and selectivity,which are generally lowered.Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction.SERS is known to be a reliable diagnostic method for treatment judgments.Nonetheless,there is still room for advancement in terms of portability,creation of diagnostic apps,and interdisciplinary AI-based applications.Therefore,we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article.The review will meet the demand for reviewing various sample types(invasive and non-invasive)of cancer biomarkers and their detection using SERS.It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.展开更多
A highly versatile seed-mediated approach for the synthesis of citrate-stabilized gold,silver and palladium nanoparticles(NPs)with size control is reported.The use of iron(Ⅱ)as a reducing agent enables the fabricatio...A highly versatile seed-mediated approach for the synthesis of citrate-stabilized gold,silver and palladium nanoparticles(NPs)with size control is reported.The use of iron(Ⅱ)as a reducing agent enables the fabrication of monodisperse NPs in a wide range of sizes(from 15 nm to at least 120 nm(90 nm for Pd))at room temperature.The citrate as capping ligand on the NPs surface facilitates its further surface modification with proteins and thiolated molecules.展开更多
基金supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no.894227The FET Open grant agreement no.965018(BIOCELLPHE)+3 种基金the MCIN/AEI/10.13039/501100011033 grant PID2019-108954RB-I00GMSC is supported by Sao Paulo Research Foundation(FAPESP)LFL was supported by the Public Ministry of Labor Campinas(Research,Prevention,and Education of Occupational Cancer)funded by PRONON-PRONON/MS(Abordagens móveis e de tecnologia para prevenção prim´aria e secundária de câncer-NUP:25000.015000/2019-53).
文摘These days,cancer is thought to be more than just one illness,with several complex subtypes that require different screening approaches.These subtypes can be distinguished by the distinct markings left by metabolites,proteins,miRNA,and DNA.Personalized illness management may be possible if cancer is categorized according to its biomarkers.In order to stop cancer from spreading and posing a significant risk to patient survival,early detection and prompt treatment are essential.Traditional cancer screening techniques are tedious,time-consuming,and require expert personnel for analysis.This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results.Using time and money saving techniques,these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity.With its proven potential for biomedical use,surface-enhanced Raman scattering(SERS)has been widely used in biosensing applications,particularly in biomarker identification.Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool.The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article,along with sample preparation techniques and obstacles.Aside from these significant constraints in the detection approach and techniques,the review also takes into account the complexity of biological fluids,the availability of biomarkers,and their sensitivity and selectivity,which are generally lowered.Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction.SERS is known to be a reliable diagnostic method for treatment judgments.Nonetheless,there is still room for advancement in terms of portability,creation of diagnostic apps,and interdisciplinary AI-based applications.Therefore,we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article.The review will meet the demand for reviewing various sample types(invasive and non-invasive)of cancer biomarkers and their detection using SERS.It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
基金This work was supported by the Ministerio de Economiay Competitividad(MINECO,Spain,No.MAT2016-77809-R)Xunta de Galicia/FEDER(No.GRC ED431C 2016-048).
文摘A highly versatile seed-mediated approach for the synthesis of citrate-stabilized gold,silver and palladium nanoparticles(NPs)with size control is reported.The use of iron(Ⅱ)as a reducing agent enables the fabrication of monodisperse NPs in a wide range of sizes(from 15 nm to at least 120 nm(90 nm for Pd))at room temperature.The citrate as capping ligand on the NPs surface facilitates its further surface modification with proteins and thiolated molecules.