期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries 被引量:5
1
作者 Qing Wen Hao Fu +8 位作者 Ru-de Cui He-Zhang Chen Rui-Han Ji Lin-Bo Tang Cheng Yan Jing Mao Ke-Hua Dai Xia-Hui Zhang jun-chao zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期287-303,I0009,共18页
To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical cap... To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical capacity, and environmental compatibility in recent years. However, zinc anode in aqueous zinc ion batteries is still facing several challenges such as dendrite growth and side reactions(e.g., hydrogen evolution), which cause poor reversibility and the failure of batteries. To address these issues, interfacial modification of Zn anodes has received great attention by tuning the interaction between the anode and the electrolyte. Herein, we present recent advances in the interfacial modification of zinc anode in this review. Besides, the challenges of reported approaches of interfacial modification are also discussed.Finally, we provide an outlook for the exploration of novel zinc anode for aqueous zinc ion batteries.We hope that this review will be helpful in designing and fabricating dendrite-free and hydrogenevolution-free Zn anodes and promoting the practical application of aqueous rechargeable zinc ion batteries. 展开更多
关键词 Zinc ion batteries Zinc anode Interfacial modification Functional coating
下载PDF
Synthesis and properties of single-crystal Ni-rich cathode materials in Li-ion batteries 被引量:11
2
作者 Shi-jie LU Yang LIU +4 位作者 Zhen-jiang HE Yun-jiao LI jun-chao zheng Jing MAO Ke-hua DAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1074-1086,共13页
Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigat... Single-crystal Ni-rich cathode material LiNi0.88Co0.09Al0.03O2(SC) was synthesized by a high-temperature solid-state calcination method. Physicochemical properties of primary and delithiated SC samples were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical performance was characterized by long-term cycling, cyclic voltammetry, and in-situ impedance spectroscopy. The results indicated that high temperature rendered layered oxides to lose lithium/oxygen in the interior and exterior, and induced cationic disordering. Besides, the solid-phase synthesis process promoted phase transformation for electrode materials, causing the coexisting multi-phase in a single particle. High temperature can foster the growth of single particles, but it caused unstable structure of layered phase. 展开更多
关键词 lithium-ion battery cathode material SINGLE-CRYSTAL electrochemical performance phase transformation
下载PDF
Boosting cell performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode material via structure design 被引量:8
3
作者 Lin-bo Tang Yang Liu +4 位作者 Han-xin Wei Cheng Yan Zhen-jiang He Yun-jiao Li jun-chao zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期114-123,共10页
Ni-rich cathodes exhibit appealing properties,such as high capacity density,low cost,and prominent energy density.However,the inferior ionic conductivity and bulk structural degradation become bottlenecks for Ni-rich ... Ni-rich cathodes exhibit appealing properties,such as high capacity density,low cost,and prominent energy density.However,the inferior ionic conductivity and bulk structural degradation become bottlenecks for Ni-rich cathodes and severely limit their commercial utilization.Traditional coating and doping methods suffer fatal drawbacks in functioning as a unit and cannot radically promote material performance to meet the needs of Li-ion batteries(LIBs).Herein,we successfully devised an ingenious and facile synthetic method to establish Ni-rich oxides with a La_(2)Zr_(2)O_(7) coating and Zr doping.The coating layer improves the ion diffusion kinetics and enhances Li-ion transportation while Zr doping effectively suppresses the phase transition of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode.Owing to the synergetic effect of Zr doping and La_(2)Zr_(2)O_(7) coating,the modified material shows prominent initial discharge capacity of 184.7 m Ah g^(-1) at 5℃ and maintains 177.5 m Ah g^(-1) after 100 cycles at 1℃.Overall,the proposed feasible electrode design method can have a far-reaching impact on further fabrication of advanced cathodes for high-performance LIBs. 展开更多
关键词 Lithium ion battery Ni-rich material La_(2)Zr_(2)O_(7)coating Zr doping Electrochemical performance
下载PDF
Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification 被引量:2
4
作者 Ying-De Huang Han-Xin Wei +11 位作者 Pei-Yao Li Yu-Hong Luo Qing Wen Ding-Hao Le Zhen-Jiang He Hai-Yan Wang You-Gen Tang Cheng Yan Jing Mao Ke-Hua Dai Xia-Hui Zhang jun-chao zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期301-309,I0008,共10页
High-nickel single-crystal layered oxide material has become the most promising cathode material for electric vehicle power battery due to its high energy density.However,this material still suffers from structural de... High-nickel single-crystal layered oxide material has become the most promising cathode material for electric vehicle power battery due to its high energy density.However,this material still suffers from structural degradation during cycling and especially the severe interfacial reactions at elevated temperatures that exacerbate irreversible capacity loss.Here,a simple strategy was used to construct a dualfunction Li_(1.5)Al_(0.5)Ge_(1.5)P_(3)O_(12)(LAGP)protective layer on the surface of the high-nickel single-crystal(SC)cathode material,leading to SC@LAGP material.The strong Al-O bonding effectively inhibits the release of lattice oxygen(O)at elevated temperatures,which is supported by the positive formation energy of O vacancy from first-principal calculations.Besides,theoretical calculations demonstrate that the appropriate amount of Al doping accelerates the electron and Li^(+)transport,and thus reduces the kinetic barriers.In addition,the LAGP protective layer alleviates the stress accumulation during cycling and effectively reduces the erosion of materials from the electrolyte decomposition at elevated temperatures.The obtained SC@LAGP cathode material demonstrates much enhanced cycling stability even at high voltage(4.6 V)and elevated temperature(55℃),with a high capacity retention of 91.3%after 100 cycles.This work reports a simple dual-function coating strategy that simultaneously stabilizes the structure and interface of the single-crystal cathode material,which can be applied to design other cathode materials. 展开更多
关键词 Lithium-ion battery Ni-rich cathode Dual-function coating SINGLE-CRYSTALLINE Elevated temperature
下载PDF
In-situ chemical conversion film for stabilizing zinc metal anodes 被引量:1
5
作者 Hao Fu Qing Wen +7 位作者 Pei-Yao Li Zhen-yu Wang Zhen-jiang He Cheng Yan Jing Mao Kehua Dai Xia-hui Zhang jun-chao zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期387-393,I0009,共8页
Zinc metal anodes face several challenges,including the uncontrolled formation of dendrites,hydrogen evolution,and corrosion,which seriously hinder their application in practice.To address the above problems such as d... Zinc metal anodes face several challenges,including the uncontrolled formation of dendrites,hydrogen evolution,and corrosion,which seriously hinder their application in practice.To address the above problems such as dendrite formation and corrosion,we present a simple and applicable immersion method that enables in situ formation of a zinc phytate(PAZ)coating on the surface of commercial Zn flakes via a substitution reaction.This protective coating mitigates corrosion of zinc flakes by the electrolyte,reduces the interfacial impedance,and accelerates the migration kinetics of zinc ions.Besides,this method can preferentially expose the(002)crystal plane with strong atomic bonding,which not only improves the corrosion resistance of the zinc flake,but can also guide the parallel deposition of zinc ions along the(002)crystal plane and reduce the formation of dendrites.Benefiting from the above advantages,the PAZ@Zn‖Cu half-cell has shown over 900 cycles with average coulombic efficiency(CE)of99.81%at 4 mA cm^(-2).Besides,the PAZ@Zn‖PAZ@Zn symmetric cell operate stably for>1000 h at5 mA cm^(-2)and>340 h at 10 mA cm^(-2).Furthermore,we demonstrated that this in situ chemical treatment enables the formation of a robust,well-bound protective coating.This method provides insights for advancing the commercialization of zinc anodes and other metal anodes. 展开更多
关键词 Zinc anode Phytic acid Protective coating DENDRITES Surface modification Corrosion resistance
下载PDF
Revealing proton-coupled exchange mechanism in aqueous ion-exchange synthesis of nickel-rich layered cathodes for lithium-ion batteries
6
作者 Yu-Hong Luo Qing-Lin Pan +10 位作者 Han-Xin Wei Ying-De Huang Pei-Yao Li Lin-Bo Tang Zhen-Yu Wang Cheng Yan Jing Mao Ke-Hua Dai Qing Wu Xia-Hui Zhang jun-chao zheng 《eScience》 2024年第4期103-109,共7页
Ion exchange is a promising synthetic method for alleviating severe cation mixing in traditional layered oxide materials for lithium-ion batteries,leading to enhanced structural stability.However,the underlying mechan... Ion exchange is a promising synthetic method for alleviating severe cation mixing in traditional layered oxide materials for lithium-ion batteries,leading to enhanced structural stability.However,the underlying mechanisms of ion exchange are still not fully understood.Such a fundamental study of the ion-exchange mechanism is needed for achieving the controllable synthesis of layered oxides with a stable structure.Herein,we thoroughly unearth the underlying mechanism that triggers the ion exchange of Ni-rich materials in aqueous solutions by examining time-resolved structural evolution combined with theoretical calculations.Our results reveal that the reaction pathway of ion exchange can be divided into two steps:protonation and lithiation.The proton is the key to achieving charge balance in the ion exchange process,as revealed by X-ray adsorption spectroscopy and inductive coupled plasma analysis.In addition,the intermediate product shows high lattice distortion during ion exchange,but it ends up with a most stable product with high lattice energy.Such apparent discrepancies in lattice energy between materials before and after ion exchange emphasize the importance of synthetic design in structural stability.This work provides new insights into the ion-exchange synthesis of Ni-rich oxide materials,which advances the development of cathode materials for high-performance lithium-ion batteries. 展开更多
关键词 Ion exchange Reaction mechanisms Proton-coupledNi-rich oxides PROTONATION LITHIATION Lithium-ion batteries
原文传递
Single-Crystal Nickel-Based Cathodes:Fundamentals and Recent Advances
7
作者 Shi-jie Lu Lin-bo Tang +7 位作者 Han-xin Wei Ying-de Huang Cheng Yan Zhen-jiang He Yun-jiao Li Jing Mao Kehua Dai jun-chao zheng 《Electrochemical Energy Reviews》 SCIE EI 2022年第4期63-103,共41页
Lithium-ion batteries(LIBs)represent the most promising choice for meeting the ever-growing demand of society for various electric applications,such as electric transportation,portable electronics,and grid storage.Nic... Lithium-ion batteries(LIBs)represent the most promising choice for meeting the ever-growing demand of society for various electric applications,such as electric transportation,portable electronics,and grid storage.Nickel-rich layered oxides have largely replaced LiCoO_(2)in commercial batteries because of their low cost,high energy density,and good reliability.Traditional nickel-based oxide particles,usually called polycrystal materials,are composed of microsized primary particles.However,polycrystal particles tend to suffer from pulverization and severe side reactions along grain boundaries during cycling.These phenomena accelerate cell degradation.Single-crystal materials,which exhibit robust mechanical strength and a high surface area,have great potential to address the challenges that hinder their polycrystal counterparts.A comprehensive understanding of the growing body of research related to single-crystal materials is imperative to improve the performance of cathodes in LIBs.This review highlights origins,recent developments,challenges,and opportunities for single-crystal layered oxide cathodes.The synthesis science behind single-crystal materials and comparative studies between single-crystal and polycrystal materials are discussed in detail.Industrial techniques and facilities are also reviewed in combination with our group’s experiences in single-crystal research.Future development should focus on facile production with strong control of the particle size and distribution,structural defects,and impurities to fully reap the benefits of single-crystal materials. 展开更多
关键词 Lithium-ion battery Cathode materials Single crystal Nickel-based layered oxides
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部