期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fatigue properties and damage constitutive model of salt rock based on CT scanning
1
作者 junbao wang Xiao Liu +3 位作者 Qiang Zhang Xinrong Liu Zhanping Song Shijin Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期245-259,共15页
To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,an... To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,and the mesoscopic pore structures of salt rock before and after fatigue tests and under different cycle numbers were measured using CT scanning instrument.Based on the test results,the effects of the cycle number and the upper-limit stress on the evolution of cracks,pore morphology,pore number,pore volume,pore size,plane porosity,and volume porosity of salt rock were analyzed.The failure path of salt rock specimens under cyclic loading was analyzed using the distribution law of plane porosity.The damage variable of salt rock under cyclic loading was defined on basis of the variation of volume porosity with cycle number.In order to describe the fatigue deformation behavior of salt rock under cyclic loading,the nonlinear Burgers damage constitutive model was further established.The results show that the model established can better reflect the whole development process of fatigue deformation of salt rock under cyclic loading. 展开更多
关键词 Salt rock Cyclic loading CT scanning Mesoscopic pore evolution Constitutive model
下载PDF
A new energy-absorbing bolt used for large deformation control of tunnel surrounding rock 被引量:1
2
作者 junbao wang Wei Liu +3 位作者 Zhanping Song Lingfeng Li Shijin Feng Yun Cheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1031-1043,共13页
In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the ... In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the length of the sleeve tube,thus preventing the surrounding rock from continuing to deform.Moreover,this bolt has a simple structure and is easy to manufacture and assemble.Then the static tensile test is conducted on the bolt specimen to test its working performance.The test results show that when the cone angle of the cone block is small,the load–displacement curve of the bolt contains three stages;when the cone angle is large,the load–displacement curve contains only two stages.Meanwhile,both the average constant resistance and the maximum absorbed energy increase linearly with the increase of cone angle.On this basis,ignoring the influence of shear stress,and it is supposed that the thickness of the sleeve tube is constant,then the theoretical calculation formula of constant resistance for the new bolt is derived,and the rationality of the formula is verified using the static tensile test results.It is found that the error of the calculated result is less than 15%when the cone angle does not exceed 15.At last,the numerical simulation method is used to analyze the performance of the new bolt.The simulation results indicate that the generation of shear stress and the change of tube thickness during the movement of the cone block are two important factors that cause theoretical errors. 展开更多
关键词 Energy-absorbing bolt Static tensile test Cone angle Constant resistance Limit ring
下载PDF
Resolving the lineage relationship between malignant cells and vascular cells in glioblastomas
3
作者 Fangyu wang Xuan Liu +12 位作者 Shaowen Li Chen Zhao Yumei Sun Kuan Tian junbao wang Wei Li Lichao Xu Jing Jing Juan wang Sylvia MEvans Zhiqiang Li Ying Liu Yan Zhou 《Protein & Cell》 SCIE CSCD 2023年第2期105-122,共18页
Glioblastoma multiforme(GBM),a highly malignant and heterogeneous brain tumor,contains various types of tumor and non-tumor cells.Whether GBM cells can trans-differentiate into non-neural cell types,including mural ce... Glioblastoma multiforme(GBM),a highly malignant and heterogeneous brain tumor,contains various types of tumor and non-tumor cells.Whether GBM cells can trans-differentiate into non-neural cell types,including mural cells or endothelial cells(ECs),to support tumor growth and invasion remains controversial.Here we generated two genetic GBM models de novo in immunocompetent mouse brains,mimicking essential pathological and molecular features of human GBMs.Lineage-tracing and transplantation studies demonstrated that,although blood vessels in GBM brains underwent drastic remodeling,evidence of trans-differentiation of GBM cells into vascular cells was barely detected.Intriguingly,GBM cells could promiscuously express markers for mural cells during gliomagenesis.Furthermore,single-cell RNA sequencing showed that patterns of copy number variations(CNVs)of mural cells and ECs were distinct from those of GBM cells,indicating discrete origins of GBM cells and vascular components.Importantly,single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages.Rather than expansion owing to trans-differentiation,vascular cell expanded by proliferation during tumorigenesis.Therefore,cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis.Our findings advance understanding of cell lineage dynamics during gliomagenesis,and have implications for targeted treatment of GBMs. 展开更多
关键词 GLIOBLASTOMA mural cells endothelial cells TRANS-DIFFERENTIATION lineage tracing single-cell sequencing copy number variation
原文传递
Transcriptome Analysis Identifies SenZfp536,a Sense LncRNA that Suppresses Self-renewal of Cortical Neural Progenitors
4
作者 Kuan Tian Andi wang +6 位作者 junbao wang Wei Li Wenchen Shen Yamu Li Zhiyuan Luo Ying Liu Yan Zhou 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第2期183-200,共18页
Long non-coding RNAs(lncRNAs)regulate transcription to control development and homeostasis in a variety of tissues and organs.However,their roles in the development of the cerebral cortex have not been well elucidated... Long non-coding RNAs(lncRNAs)regulate transcription to control development and homeostasis in a variety of tissues and organs.However,their roles in the development of the cerebral cortex have not been well elucidated.Here,a bioinformatics pipeline was applied to delineate the dynamic expression and potential cis-regulating effects of mouse lncRNAs using transcriptome data from 8 embryonic time points and sub-regions of the developing cerebral cortex.We further characterized a sense lncRNA,SenZfp536,which is transcribed downstream of and partially overlaps with the protein-coding gene Zfp536.Both SenZfp536 and Zfp536 were predominantly expressed in the proliferative zone of the developing cortex.Zfp536 was cis-regulated by SenZfp536,which facilitates looping between the promoter of Zfp536 and the genomic region that transcribes SenZfp536.Surprisingly,knocking down or activating the expression of SenZfp536 increased or compromised the proliferation of cortical neural progenitor cells(NPCs),respectively.Finally,overexpressing Zfp536 in cortical NPCs reversed the enhanced proliferation of cortical NPCs caused by SenZfp536 knockdown.The study deepens our understanding of how lncRNAs regulate the propagation of cortical NPCs through cis-regulatory mechanisms. 展开更多
关键词 Zfp536 Sense lncRNA SELF-RENEWAL Cortical development Neural progenitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部