期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Squeezing More Past Knowledge for Online Class-Incremental Continual Learning 被引量:1
1
作者 Da Yu Mingyi zhang +4 位作者 Mantian Li Fusheng Zha junge zhang Lining Sun Kaiqi Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期722-736,共15页
Continual learning(CL)studies the problem of learning to accumulate knowledge over time from a stream of data.A crucial challenge is that neural networks suffer from performance degradation on previously seen data,kno... Continual learning(CL)studies the problem of learning to accumulate knowledge over time from a stream of data.A crucial challenge is that neural networks suffer from performance degradation on previously seen data,known as catastrophic forgetting,due to allowing parameter sharing.In this work,we consider a more practical online class-incremental CL setting,where the model learns new samples in an online manner and may continuously experience new classes.Moreover,prior knowledge is unavailable during training and evaluation.Existing works usually explore sample usages from a single dimension,which ignores a lot of valuable supervisory information.To better tackle the setting,we propose a novel replay-based CL method,which leverages multi-level representations produced by the intermediate process of training samples for replay and strengthens supervision to consolidate previous knowledge.Specifically,besides the previous raw samples,we store the corresponding logits and features in the memory.Furthermore,to imitate the prediction of the past model,we construct extra constraints by leveraging multi-level information stored in the memory.With the same number of samples for replay,our method can use more past knowledge to prevent interference.We conduct extensive evaluations on several popular CL datasets,and experiments show that our method consistently outperforms state-of-the-art methods with various sizes of episodic memory.We further provide a detailed analysis of these results and demonstrate that our method is more viable in practical scenarios. 展开更多
关键词 Catastrophic forgetting class-incremental learning continual learning(CL) experience replay
下载PDF
人机对抗智能技术 被引量:28
2
作者 黄凯奇 兴军亮 +2 位作者 张俊格 倪晚成 徐博 《中国科学:信息科学》 CSCD 北大核心 2020年第4期540-550,共11页
人机对抗作为人工智能研究的前沿方向,已成为国内外智能领域研究的热点,并为探寻机器智能内在生长机制和关键技术验证提供有效试验环境和途径.本文针对巨复杂、高动态、不确定的强对抗环境对智能认知和决策带来的巨大挑战,分析了人机对... 人机对抗作为人工智能研究的前沿方向,已成为国内外智能领域研究的热点,并为探寻机器智能内在生长机制和关键技术验证提供有效试验环境和途径.本文针对巨复杂、高动态、不确定的强对抗环境对智能认知和决策带来的巨大挑战,分析了人机对抗智能技术研究现状,梳理了其内涵和机理,提出了以博弈学习为核心的人机对抗智能理论研究框架;并在此基础上论述了其关键模型:对抗空间表示与建模、态势评估与推理、策略生成与优化、行动协同与控制;为复杂认知与决策问题的可建模、可计算、可解释求解奠定了基础.最后,本文总结了当前应用现状并对未来发展方向进行了展望. 展开更多
关键词 人工智能 人机对抗 机器学习 智能博弈 认知决策
原文传递
Local structured representation for generic object detection 被引量:1
3
作者 junge zhang Kaiqi HUANG +1 位作者 Tieniu TAN Zhaoxiang zhang 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期632-648,共17页
Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of struc- ture modeling and representation from two aspects... Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of struc- ture modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we pro- pose Local Structured Descriptor to capture the object's local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local strnctured model with a boosted fea- ture selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance. 展开更多
关键词 Local Structured Descriptor Local StructuredModel Object Representation Object Structure Object De-tection PASCAL VOC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部