The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues ...The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.展开更多
A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing&q...A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing"characteristic of current at the local end during the converter capacitor discharge stage,the fault identification scheme is proposed.The distributed parameter-based fault location equation,which incorporates fault distance and fault impedance,is developed with the injection signal and the distributed parameter model during the adaptive reclosing stage.The fault distance is determined using a trust region reflection algorithm to identify the permanent fault,and a fault iden-tification scheme for adaptive reclosing is developed.Simulation results show that the proposed scheme is suitable for long-distance transmission lines with strong anti-fault impedance and anti-interference performance.Also,it is less affected by communication delay and DC boundary strength than existing methods.展开更多
Considering the advantages and limitations of traditional identification method,combined with the strategy of active detection,the principle of DC grid pilot protection based on active detection is proposed to improve...Considering the advantages and limitations of traditional identification method,combined with the strategy of active detection,the principle of DC grid pilot protection based on active detection is proposed to improve the sensitivity and reliability of hybrid MMC DC grid protection,and to ensure the accurate identification of fault areas in DC grid.By using the DC fault ride-through control strategy of the hybrid sub-module MMC,the fault current at the converter station DC terminal is limited.Based on the high controllability of hybrid MMC,sinusoidal fault detection signals with the same frequency are injected into the line at each converter station.Based on model recognition,the capacitance model condition is satisfied by the detected signals at both ends during external faults whereas not satisfied during internal faults.The Spearman correlation coefficients is then introduced,and the correlation discriminant of capacitance model is constructed to realize fault area discrimination of DC grid.The simulation results show that the active detection protection scheme proposed in this paper can accurately identify the fault area of DC grid,and is not affected by fault impedance and has low sampling rate requirement.展开更多
Dear Editor, Endocytosis is a crucial process employed by cells to internal- ize nutrients and turnover membrane components and is essential for many functions, including nutrient uptake, signal transduction, cytokine...Dear Editor, Endocytosis is a crucial process employed by cells to internal- ize nutrients and turnover membrane components and is essential for many functions, including nutrient uptake, signal transduction, cytokinesis, morphogenesis, cell adhesion and migration. Endocytosis is classified as clathrin-dependent endocytosis (CDE) or clathrin-independent endocytosis (CIE) according to its dependence on clathrin. Several different CIE pathways have been proposed, including caveolin-dependent endocytosis, flotillin-dependent endocytosis, the clathrin-inde- pendent carrier pathway, ARF6-dependent endocytosis, phagocytosis, macropinocytosis, the IL2RI3 pathway (Doherty and McMahon, 2009), the newly identified fast endophilin-me- diated endocytosis pathway (Boucrot et al., 2015) and the EGFR-NCE pathway (Caldieri et al., 2017).展开更多
Organ regeneration is an important, fascinating, and old topic while much remains unknown in spite of extensiveinvestigations for decades. From March 25th to 27th, 2021, the Third Chinese Symposium on Organ Regenerati...Organ regeneration is an important, fascinating, and old topic while much remains unknown in spite of extensiveinvestigations for decades. From March 25th to 27th, 2021, the Third Chinese Symposium on Organ Regenerationtook place in the beautiful ocean city of Zhoushan, Zhejiang, China. This biennial conference attracted ~ 300 academicattendees: students, postdoctoral fellows, and principal investigators, in addition to few industrial investigators.The mixed live and virtual talks covered the broad field of organ regeneration from different animal organisms tohuman organoids, and concluded with some impressive advances on inflammatory signaling, regenerative signalingmechanisms, new technologies, and applications for organ regeneration.展开更多
基金supported by Science and Technology Project of State Grid Corporation of China(52094020006U)National Natural Science Foundation of China(NSFC)(52061635105)China Postdoctoral Science Foundation(2021M692525).
文摘The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.
基金supported by the Technology Projects of Southern Power Grid Electric Power Research Institute of China(SEPRI-K22B055)National Nature Science Foundation project(2021YFB1507000,2021YFB1507004)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C662).
文摘A fault identification scheme for protection and adaptive reclosing is proposed for a hybrid multi-terminal HVDC system to increase the reliability of fault isolation and reclosing.By analyzing the"zero passing"characteristic of current at the local end during the converter capacitor discharge stage,the fault identification scheme is proposed.The distributed parameter-based fault location equation,which incorporates fault distance and fault impedance,is developed with the injection signal and the distributed parameter model during the adaptive reclosing stage.The fault distance is determined using a trust region reflection algorithm to identify the permanent fault,and a fault iden-tification scheme for adaptive reclosing is developed.Simulation results show that the proposed scheme is suitable for long-distance transmission lines with strong anti-fault impedance and anti-interference performance.Also,it is less affected by communication delay and DC boundary strength than existing methods.
基金supported by The National Natural Science Foundation key project(U1766209).
文摘Considering the advantages and limitations of traditional identification method,combined with the strategy of active detection,the principle of DC grid pilot protection based on active detection is proposed to improve the sensitivity and reliability of hybrid MMC DC grid protection,and to ensure the accurate identification of fault areas in DC grid.By using the DC fault ride-through control strategy of the hybrid sub-module MMC,the fault current at the converter station DC terminal is limited.Based on the high controllability of hybrid MMC,sinusoidal fault detection signals with the same frequency are injected into the line at each converter station.Based on model recognition,the capacitance model condition is satisfied by the detected signals at both ends during external faults whereas not satisfied during internal faults.The Spearman correlation coefficients is then introduced,and the correlation discriminant of capacitance model is constructed to realize fault area discrimination of DC grid.The simulation results show that the active detection protection scheme proposed in this paper can accurately identify the fault area of DC grid,and is not affected by fault impedance and has low sampling rate requirement.
文摘Dear Editor, Endocytosis is a crucial process employed by cells to internal- ize nutrients and turnover membrane components and is essential for many functions, including nutrient uptake, signal transduction, cytokinesis, morphogenesis, cell adhesion and migration. Endocytosis is classified as clathrin-dependent endocytosis (CDE) or clathrin-independent endocytosis (CIE) according to its dependence on clathrin. Several different CIE pathways have been proposed, including caveolin-dependent endocytosis, flotillin-dependent endocytosis, the clathrin-inde- pendent carrier pathway, ARF6-dependent endocytosis, phagocytosis, macropinocytosis, the IL2RI3 pathway (Doherty and McMahon, 2009), the newly identified fast endophilin-me- diated endocytosis pathway (Boucrot et al., 2015) and the EGFR-NCE pathway (Caldieri et al., 2017).
基金The authors were supported by grants from the National Key R&D Program of China(2018YFA0800501 and 2019YFA0801602)the National Natural Science Foundation of China(31730061 and 31430059)。
文摘Organ regeneration is an important, fascinating, and old topic while much remains unknown in spite of extensiveinvestigations for decades. From March 25th to 27th, 2021, the Third Chinese Symposium on Organ Regenerationtook place in the beautiful ocean city of Zhoushan, Zhejiang, China. This biennial conference attracted ~ 300 academicattendees: students, postdoctoral fellows, and principal investigators, in addition to few industrial investigators.The mixed live and virtual talks covered the broad field of organ regeneration from different animal organisms tohuman organoids, and concluded with some impressive advances on inflammatory signaling, regenerative signalingmechanisms, new technologies, and applications for organ regeneration.