Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes pol...Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes polysaccharide(FVP)were investigated.Initial results revealed that the suitable amounts of FVP contributed to reducing the turbidity of SPI solution.Under electrostatic interaction,the formation of SPI/FVP coacervates were spontaneous and went through a nucleation and growth process.Low salt concentration(C_(NaCl)=10,50 mmol/L)led to an increase in the critical pH values(pHc,pHφ1)while the critical pH values decreased when C_(NaCl)≥100 mmol/L.The concentration of NaCl ions increased the content ofα-helix.With the increase of FVP,the critical pH values decreased and the content ofβ-sheet increased through electrostatic interaction.At SPI/FVP ratio of 10:1 and 15:1,the complex coacervation of SPI/FVP were saturated,and the coacervates had the same storage modulus value.SPI/FVP coacervates exhibited solid-like properties and presented the strongest storage modulus at C_(NaCl)=50 mmol/L.The optimal pH,SPI/FVP ratio and NaCl concentration of complex coacervation were collected,and the coacervates demonstrated a valuable application potential to protect and deliver bioactives and food ingredients.展开更多
基金supported by the National Key R&D Program of China (2017YFD0400205)Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_1402)
文摘Soy protein isolate(SPI)is a commercial protein with balanced amino acids,while the poor solubility impedes its use in traditional foods.To overcome the problem,the complex coacervation of SPI/Flammulina velutipes polysaccharide(FVP)were investigated.Initial results revealed that the suitable amounts of FVP contributed to reducing the turbidity of SPI solution.Under electrostatic interaction,the formation of SPI/FVP coacervates were spontaneous and went through a nucleation and growth process.Low salt concentration(C_(NaCl)=10,50 mmol/L)led to an increase in the critical pH values(pHc,pHφ1)while the critical pH values decreased when C_(NaCl)≥100 mmol/L.The concentration of NaCl ions increased the content ofα-helix.With the increase of FVP,the critical pH values decreased and the content ofβ-sheet increased through electrostatic interaction.At SPI/FVP ratio of 10:1 and 15:1,the complex coacervation of SPI/FVP were saturated,and the coacervates had the same storage modulus value.SPI/FVP coacervates exhibited solid-like properties and presented the strongest storage modulus at C_(NaCl)=50 mmol/L.The optimal pH,SPI/FVP ratio and NaCl concentration of complex coacervation were collected,and the coacervates demonstrated a valuable application potential to protect and deliver bioactives and food ingredients.