As one of the low-cost energy storage systems,Na-ion batteries(NIBs)have received tremendous attention.However,the performance of current anode materials still cannot meet the requirements of NIBs.In our work,we obtai...As one of the low-cost energy storage systems,Na-ion batteries(NIBs)have received tremendous attention.However,the performance of current anode materials still cannot meet the requirements of NIBs.In our work,we obtain sulfur-doped interconnected carbon microspheres(S-CSs)via a simple hydrothermal method and subsequent sulfurizing treatment.Our S-CSs exhibit an ultrahigh reversible capacity of 520 mAh g^(-1) at 100 mA g^(-1) after 50 cycles and an excellent rate capability of 257 mAh g^(-1),even at a high current density of 2 A g^(-1).The density functional theory calculations demonstrate that sulfur doping in carbon favors the adsorption of Na atom during the sodiation process,which is accountable for the performance enhancement.Furthermore,we also utilize operando Raman spectroscopy to analyze the electrochemical reaction of our S-CSs,which further highlights the sulfur doping in improving Na-ion storage performance.展开更多
Dear Editor,earEaltor,Nitrogen(N)is the most important macronutrient driving plant growth and development.For higher plants,inorganic N including nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are predominant N sources(Hu...Dear Editor,earEaltor,Nitrogen(N)is the most important macronutrient driving plant growth and development.For higher plants,inorganic N including nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are predominant N sources(Hu et al.,2023).Nitrate needs to be firstly reduced into ammonium to implement its assimilation,thus requiring a higher energy consumption than ammonium,making ammonium more cost effective for plants.However,ammonium usually causes severe growth retardation of plants under high concentration,which is known as ammonium toxicity.The concentrations of nitrate and ammonium greatly vary in different soil environments.Nitrate is the major inorganic N form in dry land,while ammonium accounts for thehighest proportion of inorganic N in the paddy field,where nitrification is suppressed(Haynes and Goh,1978).Although nitrogen is generally one of the most important contributing factors for yield increase,irrational fertilization strategies can cause negative effects.展开更多
The coordinated utilization of nitrogen(N)and phosphorus(P)is vital for plants to maintain nutrient balance and achieve optimal growth.Previously,we revealed a mechanism by which nitrate induces genes for phosphate ut...The coordinated utilization of nitrogen(N)and phosphorus(P)is vital for plants to maintain nutrient balance and achieve optimal growth.Previously,we revealed a mechanism by which nitrate induces genes for phosphate utilization;this mechanism depends on NRT1.1B-facilitated degradation of cytoplasmic SPX4,which in turn promotes cytoplasmic-nuclear shuttling of PHR2,the central transcription factor of phosphate signaling,and triggers the nitrate-induced phosphate response(NIPR)and N-P coordinated utilization in rice.In this study,we unveiled a fine-tuning mechanism of NIPR in the nucleus regulated by Highly Induced by Nitrate Gene 1(HINGE1,also known as RLI1),a MYB-transcription factor closely related to PHR2.RLI1/HINGE1,which is transcriptionally activated by PHR2 under nitrate induction,can directly activate the expression of phosphate starvation-induced genes.More importantly,RLI1/HINGE1 competes with PHR2 for binding to its repressor proteins in the nucleus(SPX proteins),and consequently releases PHR2 to further enhance phosphate response.Therefore,RLI1/HINGE1 amplifies the phosphate response in the nucleus downstream of the cytoplasmic SPX4-PHR2 cascade,thereby enabling fine-tuning of N-P balance when nitrate supply is sufficient.展开更多
Mass loading and potential plateau are the two most important issues of potassium(K)-ion batteries(KIBs),but they have long been ignored in previous studies.Herein,we report a simple and scalable method to fabricate a...Mass loading and potential plateau are the two most important issues of potassium(K)-ion batteries(KIBs),but they have long been ignored in previous studies.Herein,we report a simple and scalable method to fabricate acidized carbon clothes(A-CC)as high mass loading(13.1 mg cm−2)anode for KIBs,which achieved a reversible areal-specific capacity of 1.81 mAh cm−2 at 0.2 mA cm−2.Besides,we have proposed the concept of“relative energy density”to reasonably evaluate the electrochemical performance of the anode.According to our calculation method,the A-CC electrode exhibited an ultrahigh relative energy density of 46 Wh m−2 in the initial charge process and remained at 40 Wh m−2 after 50 cycles.Furthermore,we performed the operando Raman spectroscopy(ORS)to investigate the K-ion storage mechanism.We believe that our work might provide a new guideline for the evaluation of anode performance,thereby,opening an avenue for the development of commercial anode.展开更多
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:21617330National Natural Science Foundation of China,Grant/Award Numbers:21703081,51702056,51772135Ministry of Education of the People's Republic of China,Grant/Award Number:6141A02022516。
文摘As one of the low-cost energy storage systems,Na-ion batteries(NIBs)have received tremendous attention.However,the performance of current anode materials still cannot meet the requirements of NIBs.In our work,we obtain sulfur-doped interconnected carbon microspheres(S-CSs)via a simple hydrothermal method and subsequent sulfurizing treatment.Our S-CSs exhibit an ultrahigh reversible capacity of 520 mAh g^(-1) at 100 mA g^(-1) after 50 cycles and an excellent rate capability of 257 mAh g^(-1),even at a high current density of 2 A g^(-1).The density functional theory calculations demonstrate that sulfur doping in carbon favors the adsorption of Na atom during the sodiation process,which is accountable for the performance enhancement.Furthermore,we also utilize operando Raman spectroscopy to analyze the electrochemical reaction of our S-CSs,which further highlights the sulfur doping in improving Na-ion storage performance.
基金the National Key R&D Program of China(no.2021YFD1201300)the National Natural Science Foundation of China(U22A20468 and no.32272802)the Strategic Priority Research Program of the Chinese Academy of Sciences(Precision Seed Design and Breeding,XDA24010402).
文摘Dear Editor,earEaltor,Nitrogen(N)is the most important macronutrient driving plant growth and development.For higher plants,inorganic N including nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are predominant N sources(Hu et al.,2023).Nitrate needs to be firstly reduced into ammonium to implement its assimilation,thus requiring a higher energy consumption than ammonium,making ammonium more cost effective for plants.However,ammonium usually causes severe growth retardation of plants under high concentration,which is known as ammonium toxicity.The concentrations of nitrate and ammonium greatly vary in different soil environments.Nitrate is the major inorganic N form in dry land,while ammonium accounts for thehighest proportion of inorganic N in the paddy field,where nitrification is suppressed(Haynes and Goh,1978).Although nitrogen is generally one of the most important contributing factors for yield increase,irrational fertilization strategies can cause negative effects.
基金This work was supported by the National Key Research and Development Program of China(2016YFD0101801,2009CB118506)the National Natural Sciences Foundation of China(31771348,32002119)China Postdoctoral Science Foundation(2020M672569).
文摘The coordinated utilization of nitrogen(N)and phosphorus(P)is vital for plants to maintain nutrient balance and achieve optimal growth.Previously,we revealed a mechanism by which nitrate induces genes for phosphate utilization;this mechanism depends on NRT1.1B-facilitated degradation of cytoplasmic SPX4,which in turn promotes cytoplasmic-nuclear shuttling of PHR2,the central transcription factor of phosphate signaling,and triggers the nitrate-induced phosphate response(NIPR)and N-P coordinated utilization in rice.In this study,we unveiled a fine-tuning mechanism of NIPR in the nucleus regulated by Highly Induced by Nitrate Gene 1(HINGE1,also known as RLI1),a MYB-transcription factor closely related to PHR2.RLI1/HINGE1,which is transcriptionally activated by PHR2 under nitrate induction,can directly activate the expression of phosphate starvation-induced genes.More importantly,RLI1/HINGE1 competes with PHR2 for binding to its repressor proteins in the nucleus(SPX proteins),and consequently releases PHR2 to further enhance phosphate response.Therefore,RLI1/HINGE1 amplifies the phosphate response in the nucleus downstream of the cytoplasmic SPX4-PHR2 cascade,thereby enabling fine-tuning of N-P balance when nitrate supply is sufficient.
基金supports from the National Natural Science Foundation of China(51702056 and 51772135)the Ministry of Education of China(6141A02022516),China Postdoctoral Science Foundation(2017M622902 and 2019T120790)+1 种基金funding from the University of Macao(SRG2016-00092-IAPME,MYRG2018-00079-IAPME,and MYRG2019-00115IAPME)the Science and Technology Development Fund,Macao SAR(FDCT081/2017/A2,FDCT0059/2018/A2,and FDCT009/2017/AMJ).
文摘Mass loading and potential plateau are the two most important issues of potassium(K)-ion batteries(KIBs),but they have long been ignored in previous studies.Herein,we report a simple and scalable method to fabricate acidized carbon clothes(A-CC)as high mass loading(13.1 mg cm−2)anode for KIBs,which achieved a reversible areal-specific capacity of 1.81 mAh cm−2 at 0.2 mA cm−2.Besides,we have proposed the concept of“relative energy density”to reasonably evaluate the electrochemical performance of the anode.According to our calculation method,the A-CC electrode exhibited an ultrahigh relative energy density of 46 Wh m−2 in the initial charge process and remained at 40 Wh m−2 after 50 cycles.Furthermore,we performed the operando Raman spectroscopy(ORS)to investigate the K-ion storage mechanism.We believe that our work might provide a new guideline for the evaluation of anode performance,thereby,opening an avenue for the development of commercial anode.